
4 
REVERSIBLE PROCESSES AND 

THE MAXIMUM WORK THEOREM 

4-1 POSSIBLE AND IMPOSSIBLE PROCESSES 

An engineer may confront the problem of designing a device to accom-
plish some specified task-perhaps to lift an elevator to the upper floors 
of a tall building. Accordingly the engineer contrives a linkage or "engine" 
that conditionally permits transfer of energy from a furnace to the 
elevator; if heat flows from the furnace then, by virtue of the interconnec-
tion of various pistons, levers, and cams, the elevator is required to rise. 
But ··nature" (i.e., the laws of physics) exercises the crucial decision-will 
the proposition be accepted or wi11 the device sit dormant and inactive, 
with no heat leaving the furnace and no rise in height of the elevator? The 
outcome is conditioned by two criteria. First, the engine must obey the 
Jaws of mechanics (including, of course, the conservation of energy). 
Second, the process must maximal1y increase the entropy. 

Patent registration offices are replete with failed inventions of impecca-
ble conditional logic (if A occurs then B must occur)-ingenious devices 
that conform to al1 the laws of mechanics but that nevertheless sit 
stubbornly inert, in mute refusal to decrease the entropy. Others operate, 
but with unintended results, increasing the entropy more effectively than 
envisaged by the inventor. 

If, however, the net changes to be effected correspond to a maximal 
permissible increase in the total entropy, with no change in total energy, 
then no fundamental law precludes the existence of an appropriate 
process. It may require considerable ingenuity to devise the appropriate 
engine, but such an engine can be assumed to be permissible in principle. 

Example 1 
A particular system is constrained to constant mole number and volume, so that 
no work can be done on or by the system. Furthermore, the heat capacity of the 
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92 Reversible Processes and the Maximum Work Theorem 

system is C, a constant. The fundamental equation of the system, for constant 
volume, is S = S0 + C In( U / U0 ), so U = CT. 

Two such systems, with equal heat capacities, have initial temperatures T10 

and Tio, with T10 < Tio. An engine is to be designed to lift an elevator (i.e., to 
deliver work to a purely mechanical system), drawing energy from the two 
thermodynamic systems. What is the maximum work that can be so delivered? 

Solution 
The two thermal systems will be left at some common temperature 7i. The change 
in energy of the two thermal systems accordingly will be 

!:J.U = 2C7i - C(T 10 + Tzo) 
and the work delivered to the mechanical system (the "elevator") will be W = 
-!:J.U, or 

W = C( TIO + T20 - 27t) 
The change in total entropy will occur entirely in the two thermal systems, for 
which 

7t 1i 7t !:J.S = Cln- + Cln- = 2Cln---
TIO T20 JT10T20 

To max1rmze W we clearly wish to nummize 7t ( cf. the second equation 
preceding), and by the third equation this dictates that we minimize !:J.S. The 
minimum possible !:J.S is zero, corresponding to a reversible process. Hence the 
optimum engine will be one for which 

1i = JT10Tzo 
and 

W = c( TIO+ T20 - 2JT 10T20 ) 

As a postscript, we note that the assumption that the two thermal systems are 
left at a common temperature is not necessary; W can be minimized with respect 
to Tlf and T21 separately, with the same result. The simplifying assumption of a 
common temperature follows from a self-consistent argument, for if the final 
temperature were different we could obtain additional work by the method 
described. 

Example 2 
An interesting variant of Example 1 is one in which three bodies (each of the type 
described in Example 1, with U = CT) have initial temperatures of 300 K, 350 K, 
and 400 K, respectively. It is desired to raise one body to as high a temperature as 
possible, independent of the final temperatures of the other two (and without 
changing the state of any external system). What is the maximum achievable 
temperature of the single body? 

Solution 
Designate the three initial temperatures, measured in units of 100 K, as T1, T2, 
and T3 (T 1 = 3, T2 = 3.5, and T3 = 4). Similarly, designate the high temperature 
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achieved by one of the bodies (in the same urnts) as Th. It is evident that the two 
remainmg bodies will be left at the same temperature T,_ (for 1f they were to be 
left at different temperatures we could extract work, as in Example 1, and insert it 
as heat to further raise the temperature of the hot body). Then energy conserva-
tion requires 

Th + 2Tc = T1 + T2 + T3 = 10.5 

The total entropy change is 

( T/Th ) 
tJ.S = C ln T T T 

I 2 3 

and the requirement that this be positive implies 

( = 42) 

Eliminating Tc by the energy conservation condition 

( 5 .25 - :h ) \h ;::.:: 42 

A plot of the left-hand side of this equation is shown. The plot is restricted to 
values of Th between O and 10.5, the latter bound following from the energy 
conservation condition and the requirement that T,_ be positive. The plot indi-
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cates that the maximum value of Th• for w1uch the ordinate is greater than 42, is 

T,. = 4.095 (or T,. = 409.5 K) 

and furthermore that this value satisfies the equality, and therefore corresponds to 
a reversible process. 

Another solution to this problem will be developed in Problem 4.6-7. 

PROBLEMS 

4.1-1. One mole of a monatomic ideal gas and one mole of an ideal van der 
Waals fluid (Section 3.5) with c = 3/2 are contained separately in vessels of fixed 
volumes v1 and v2• The temperature of the ideal gas is T1 and that of the van der 
Waals fluid is 7;_. It is desired to bring the ideal gas to temperature T2, 

maintaining the total energy constant. What is the final temperature of the van 
der Waals fluid? What restrictions apply among the parameters (T 1, T2 , a, b, v1, v2 ) 

if it is to be possible to design an engine to accomplish this temperature inversion 
(assuming, as always, that no external system is to be altered in the process)? 
4.1-2. A rubber band (Section 3.7) is initially at temperature TB and length LB. 
One mole of a monatomic ideal gas is initially at temperature Tc and volume VG· 
The ideal gas, maintained at constant volume V0 , is to be heated to a final 
temperature T0. The energy required is to be supplied entirely by the rubber 
band. Need the length of the rubber band be changed, and, if so, by what 
amount? 

Answer: 
If/= L 8 - L 0 , 

/ 2 (/')2 2b-1 L (L ) (1 JR Tc5 - Tc) -1 t ) - co 1-L 0 ln -ZRLo TB +3Rb (L 1-L 0)/n(Tc!Tc 

4.1-3. Suppose the two systems in Example 1 were to have heat capacities of the 
form C(T) = DT", with n > 0: 
a) Show that for such systems U = U0 + DT"+ 1/(n + 1) and S = S0 + DT"/n. 
What is the fundamental equation of such a system? 
b) If the initial temperature of the two systems were T10 and T20 what would be 
the maximum delivered work (leaving the two systems at a common temperature)? 

Answer: 
b)forn=2: 

D [ 1 1 1 ( 2 2) l] W= 3 T10 + T20 - fi T10 + T20 
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4-2 QUASI-STATIC AND REVERSIBLE PROCESSES 

The central principle of entropy maximization spawns various theorems 
of more specific content when specialized to particular classes of processes. 
We shall turn our attention to such theorems after a preliminary refine-
ment of the descriptions of states and of processes. 

To describe and characterize thermodynamic states, and then to de-
scribe possible processes, it is useful to define a thermodynamic configura-
tion space. The thermodynamic configuration space of a simple system is 
an abstract space spanned by coordinate axes that correspond to the 
entropy S and to the extensive parameters U, V, N1, ••• , Nr of the system. 
The fundamental equation of the system S = S( U, V, N1, .•. , N,) defines a 
surface in the thermodynamic configuration space, as indicated schemati-
cally in Fig. 4.1. It should be noted that the surface of Fig. 4.1 conforms 
to the requirements that ( as;au) ... ' X' ••• ( = l/T) be positive, and 
that U be a single valued function of S, . : . , x, .... 

By definition, each point in the configuration space represents an 
equilibrium state. Representation of a nonequilibrium state would require 
a space of immensely greater dimension. 

The fundamental equation of a composite system can be represented by 
a surface in a thermodynamic configuration space with coordinate axes 

t s 

S = S(U···X 1 ···) 

u-

FlGURE4 l 
The hyper-surface S = S( U, ... , ~, ... ) in the thermodynamic configuration space of a 
simple system. 
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u-

FIGURE4.2 

t s 

x<1> 
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The hypersurface S = S(u<ll, ... ,x}1>, ... ,U, ... ,~, ... ) m the thermodynamic con-
figuration space of a composite system. 

corresponding to the extensive parameters of all of the subsystems. For a 
composite system of two simple subsystems the coordinate axes can be 
associateJ with the total entropy S and the extensive parameters of the 
two subsystems. A more convenient choice is the total entropy S, the 
extensive parameters of the first subsystem ( u<1>, VCl>, Np>, Np>, ... ), and 
the extensive parameters of the composite system ( U, V, N1, N2 , ••• ). An· 
appropriate section of the thermodynamic configuration space of a com-
posite system is sketched in Fig. 4.2. 

Consider an arbitrary curve drawn on the hypersurface of Fig. 4.3, from 
an initial state to a tenninal state. Such a curve is known as a quasi-static 
locus or a quasi-static process. A quasi-static process is thus defined in 
terms of a dense succession of equilibriwn states. It is to be stressed that a 
quasi-static process therefore is an idealized concept, quite distinct from a 
real physical process, for a real process always involves nonequilibrium 
intermediate states having no representation in the thermodynamic con-
figuration space. Furthermore, a quasi-static process, in contrast to a real 
process, does not involve considerations of rates, velocities, or time. The 
quasi-static process simply is an ordered succession of equilibrium states, 
whereas a real process is a temporal succession of equilibrium and 
nonequilibrium states. 

Although no real process is identical to a quasi-static process, it is 
possible to contrive real processes that have a close relationship to 
quasi-static processes. In particular, it is possible to f i a system through 
a succession of states that coincides at any desired 1'1 _,1ber of points with 



Quasi-static locus or 
Quasi-static process 

FIGURE4.3 
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x<1> 
1-........ 

Representation of a quasi-static process in the thermodynamic configuration space. 

a given quasi-static locus. Thus consider a system originally in the state A 
of Fig. 4.3, and consider the quasi-static locus passing through the points 
A, B, C, ... , H. We remove a constraint which permits the system to 
proceed from A to B but not to points further along the locus. The system 
"disappears" from the point A and subsequently appears at B, having 
passed en route through nonrepresentable nonequilibrium states. If the 
constraint is further relaxed, making the state C accessible, the system 
disappears from B and subsequently reappears at C. Repetition of the 
operation leads the system to states D, E, ... , H. By such a succession of 
real processes we construct a process that is an approximation to the 
abstract quasi-static process shown in the figure. By spacing the points 
A, B, C, ... arbitrarily closely along the quasi-static locus we approximate 
the quasi-static locus arbitrarily closely. 

The identification of - P dV as the mechanical work and of T dS as the 
heat transfer is valid only for quasi-static processes. 

Consider a closed system that is to be led along the sequence of states 
A, B, C, ... , H approximating a quasi-static locus. The system is induced 
to go from A to B by the removal of some internal constraint. The closed 
system proceeds to B if (and only if) the state B has maximum entropy 
among all newly accessible states. In particular the state B must have 
higher entropy than the state A. Accordingly, the physical process joining 
states -A and B in a closed system has unique directionality. It proceeds 
(rom the state A, of lowe1 tropy, to the state B, of higher entropy, but 
not inversely. Such processes are irreversible. 
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A quasi-static locus can be approx, ·ed by a real process in a closed 
system only if the entropy is monotonically nondecreasing along the quasi-
static locus. 

The limiting case of a quasi-static process in which the increase in the 
entropy becomes vanishingly small is called a reversible process (Fig. 4.4). : 
For such a process the final entropy is equal to the initial entropy, and the 
process can be traversed in either direction. 

t s 

FIGURE44 
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A reversible process, along a quasi-static isentropic locus. 

PROBLEMS 

4.2-1. Does every reversible process coincide with a quasi-static locus? Does every 
quasi-static locus coincide with a reversible process? For any real process starting 
in a state A and terminating in a state H, does there exist some quasi-static locus 
with the same two terminal states A and H? Does there exist some reversible 
process with the same two terminal states? 
4.2-2. Consider a monatomic ideal gas in a cylinder fitted with a piston. The walls 
of the cylinder and the piston are adiabatic. The system is initially in equilibrium, 
but the external pressure is slowly decreased. The energy change of the gas in the 
resultant expansion dV is dU = - P dV. Show, from equation 3.34, that dS = 0, 
so that the quasi-static adiabatic expansion is isentropic and reversible. 
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4.2-3. A monatomic ideal gas is permitted to expand by a free expansion from V 
to V + dV (recall Problem 3.4-8). Show that 

dS = NR dV 
V 

In a series of such infinitesimal free expansions, leading from v; to J;, show that 

~s = NRln( ~) 

Whether this atypical (and infamous) "continuous free expansion" process 
should be considered as quasi-static is a delicate point. On the positive side is the 
observation that the terminal states of the infinitesimal expansions can be spaced 
as closely as one wishes along the locus. On the negative side is the realization 
that the system necessarily passes through nonequilibrium states during each 
expansion; the irreversibility of the microexpansions is essential and irreducible. 
The fact that dS > 0 whereas dQ = 0 is inconsistent with the presumptive 
applicability of the relation dQ = T dS to all quasi-static processes. We define 
(by somewhat circular logic!) the continuous free expansion process as being 
«essentially irreversible" and non-quasi-static. 
4.2-4. In the temperature range of interest a system obeys the equations 

T = Av 2/s P = -2Av ln(s/s0) 

where A is a positive constant. The system undergoes a free expansion from v0 to 
v1 (with v1 > v0 ). Find the final temperature~ in terms of the initial temperature 
T0 , v0 , and v1. Find the increase in molar entropy. 

4-3 RELAXATION TIMES AND IRREVERSIBILITY 

Consider a system that is to be led along the quasi-static locus of Fig. 
4.3. The constraints are to be removed step by step, the system being 
permitted at each step to come to a new equilibrium state lying on the 
locus. After each slight relaxation of a constraint we must wait until the 
system fully achieves equilibrium, then we proceed with the next slight 
relaxation of the constraint and we wait again, and so forth. Although this 
is the theoretically prescribed procedure, the practical realization of the 
process seldom follows this prescription. In practice the constraints usu-
ally are relaxed continuously, at some "sufficiently slow" rate. 

The rate at which constraints can be relaxed as a system approximates a 
quasi-static locus is characterized by the relaxation time 7' of the system. 
For a given system, with a given relaxation time T, processes that occur in 
times short compared to T are not quasi-static, whereas processes that 
occur in times long compared to T can be approximately quasi-static. 

The physical considerations that determine the relaxation time can be 
illustrated by the adiabatic expansion of a gas (recall Problem 4.2-2). If 
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the piston is permitted to move outward only extremely slowly the process 
is quasi-static (and reversible). If, however, the external pressure is de-
creased rapidly the resulting rapid motion of the piston is accompanied by 
turbulence and inhomogeneous flow within the cylinder (and by an 
entropy increase that "drives" these processes). The process is then neither 
quasi-static nor reversible. To estimate the relaxation time we first recog-
nize that a slight outward motion of the piston reduces the density of the 
gas immediately adjacent to the piston. If the expansion is to be reversible 
this local "rarefaction" in the gas must be homogenized by hydrodynamic 
flow processes before the piston again moves appreciably. The rarefaction 
itself propagates through the gas with the velocity of sound, reflects from 
the walls of the cylinder, and gradually dissipates. The mechanism of 
dissipation involves both diffusive reflection from the walls and viscous 
damping within the gas. The simplest case would perhaps be that in which 
the cylinder walls are so rough that a single reflection would effectively 
dissipate the rarefaction pulse-admittedly not the common situation, but 
sufficient for our purely illustrative purposes. Then the relaxation time 
would be on the order of the time required for the rarefaction to 

I 
propagate across the system, or T ::::,: v, / c, where the cube root of the 
volume is taken as a measure of the "length" of the system and c is 
the velocity of sound in the gas. If the adiabatic expansion of the gas in 
the cylinder is performed in times much longer than this relaxation time 
the expansion occurs reversibly and isentropically. If the expansion is 
performed in times comparable to or shorter than the relaxation time 
there is an irreversible increase in entropy within the system and the 
expansion, though adiabatic, is not isentropic. 

PROBLEMS 

4.3-1. A cylinder of length L and cross-sectional area A is divided into two 
equal-volume chambers by a piston, held at the midpoint of the cylinder by a 
setscrew. One chamber of the cylinder contains N moles of a monatomic ideal gas 
at temperature T0 • This same chamber contains a spring connected to the piston 
and to the end-wall of the cylinder; the unstretched length of the spring is L/2, 
so that it exerts no force on the piston when the piston is at its initial midpoint 
position. The force constant of the spring is Kspnnp; The oth~r chamber of the 
cylinder is evacuated. The setscrew is suddenly removed. Find the volume and 
temperature of the gas when equilibrium is achieved. Assume the walls and the 
piston to be adiabatic and the heat capacities of the spring, piston, and walls to be 
negligible. 

Discuss the nature of the processes that lead to the final equilibrium state. If 
there were gas in each chamber of the cylinder the probleI/ stated would be 
indeterminate! Why? · 
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4-4 HEAT FLOW: COUPLED SYSTEMS 
AND REVERSAL OF PROCESSES 

Perhaps the most characteristic of all thermodynamic processes is the 
quasi-static transfer of heat between two systems, and it is instructive to 
examine this process with some care. 

In the simplest case we consider the trans( er of heat dQ from one 
system at temperature T to another at the same temperature. Such a 
process is reversible, the increase in entropy of the recipient subsystem 
dQ/T being exactly counterbalanced by the decrease in entropy -dQ/T 
of the donor subsystem. 

In contrast, suppose that the two subsystems have different initial 
temperatures TIO and T20 , with TIO < T20 • Further, let the heat capacities 
(at constant volume) be C1(T) and Ci{T). Then if a quantity of heat dQ1 
is quasi-statically inserted into system I (at constant volume) the entropy 
mcrease is 

(4.1) 

and similarly for subsystem 2. If such infinitesimal transfers of heat from 
the hotter to the colder body continue until the two temperatures become 
equal, then energy conservation requires 

which determines ~- The resultant change in entropy is 

!).S = lr, C,(T,) dT. + lr, C2(T2) dT 
T. 1 T 2 T10 I T20 2 

(4.2) 

(4.3) 

In the particular case in which C1 and C2 are independent of T the 
energy conservation condition gives 

(4.4) 

and the entropy increase is 

~s = c,1n( ~) + c21n( RJ (4.5) 

~t i~ left to Problem 4.4-3 ( 'emonstrate that this expression for !).S is 
intrmsically positive. 
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Several aspects of the heat transfer process deserve reflection. 
First, we note that the process, though quasi-static, is irreversible; it is 

represented in thermodynamic configuration space by a quasi-static locus 
of monotonically increasing S. 

Second, the process can be associated with the spontaneous flow of heat 
from a hot to a cold system providing (a) that the intermediate wall 
through which the heat flow occurs is thin enough that its mass (and hence 
its contribution to the thermodynamic properties of the system) is negligi-
ble, and (b) that the rate of heat flow is sufficiently slow (i.e., the thermal 
resistivity of the wall is sufficiently high) that the temperature remains 
spatially homogeneous within each subsystem. 

Third, we note that the entropy of one of the subsystems is decreased, 
whereas that of the other subsystem is increased. It is possible to decrease 
the entropy of any particular system, providing that this decrease is linked to 
an even greater entropy increase in some other system. In this sense an 
irreversible process within a given system can be "reversed"-with the 
hidden cost paid elsewhere. 

PROBLEMS 

4.4-1. Each of two bodies has a heat capacity given, in the temperature range of 
interest, by 

C =A+ BT 
where A = 8 J/K and B = 2 X 10- 2 J/K 2• If the two bodies are initially at 
temperatures T10 = 400 K and T20 = 200 K, and if they are brought into thermal 
contact, what is the final temperature and what is the change in entropy? 
4.4-2. Consider again the system of Problem 4.4-1. Let a third body be available, 
with heat capacity 

C3 = BT 

and with an initial temperature of T30 • Bodies 1 and 2 are separated, and body 3 
is put into thermal contact with body 2. What must the initial temperature 7;0 be 
in order thereby to restore body 2 to its initial state? By how much is the entropy 
of body 2 decreased in this second process? 
4.4-3. Prove that the entropy change in a heat flow process, as given in equation 
4.5, is intrinsically positive. 
4.4-4. Show that if two bodies have equal heat capacities, each of which is 
constant (independent of temperature), the equilibrium temperature achieved by 
direct thermal contact is the arithmetic average of the initial temperatures. 
4.4-5. Over a limited temperature range the heat capacity at constant volume of a 
particular type of system is inversely proportional to the temperature. 
a) What is the temperature dependence of the energy, at constant volume, for 
this type of system? 
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b) If two such systems, at initial temperatures T10 and T20 , are put into thermal 
contact what is the equilibrium temperature of the pair? 
4.4-6. A series of N + I large vats of water have temperatures T0 , T1, T2 , ••• , TN 
(with Tn > T"_ 1). A small body with heat capacity C (and with a constant 
volume, independent of temperature) is initially in thermal equilibrium with the 
vat of temperature T0 . The body is removed from this vat and immersed in the vat 
of temperature T1. The process is repeated until, after N steps, the body is in 
equilibrium with the vat of temperature TN. The sequence is then reversed, until 
the body is once again in the initial vat, at temperature T0 . Assuming the ratio of 
temperatures of successive vats to be a constant, or 

and neglecting the (small) change in temperature of any vat, calculate the change 
in total entropy as 
a) the body is successively taken "up the sequence" (from T0 to TN), and 
b) the body is brought back "down the sequence" (from TN to T0 ). 

What is the total change in entropy in the sum of the two sequences above? 
Calculate the leading nontrivial limit of these results as N--+ oo, keeping T0 

and TN constant. Note that for large N 

N(x 1IN - 1)""' lnx +(lnx) 2/2N + · · · 

4-5 THE MAXIMUM WORK THEOREM 

The propensity of physical systems to increase their entropy can be 
channeled to deliver useful work. All such applications are governed by 
the maximum work theorem. 

Consider a system that is to be taken from a specified initial state to a 
specified final state. Also available are two auxiliary systems, into one of 
which work can be transferred, and into the other of which heat can be 
transferred. Then the maximum work theorem states that for all processes 
leading from the specified initial state to the specified final state of the 
primary system, the delivery of work is maximum (and the delivery of heat is 
minimum) for a reversible process. Furthermore the delivery of work (and 
of heat) is identical for every reversible process. 

The repository system into which work is delivered is called a "reversi-
ble work source." Reversible work sources are defined as systems enclosed by 
adiabatic impermeable walls and characterized by relaxation times suffi-
ciently short that all processes within them are essentially quasi-static. From 
the thermodynamic point of view the "conservative" (nonfrictional) sys-
tems considered in the theory of mechanics are reversible work sources. 
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Maximum work process. The delivered work W Rw~ is maximum and the delivered heat 
QRHS is minimum if the entire process is reversible (~S 10 ,. 1 = 0). 

The repository system into which heat is delivered is called a "reversible 
heat source" 1. Reversible heat sources are defined as systems enclosed by 
rigid impermeable walls and characterized by relaxation times sufficiently 
short that all processes of interest within them are essentially quasi-static. If 
the temperature of the reversible heat source is T the transfer of heat dQ 
to the reversible heat source increases its entropy according to the quasi-
static relationship dQ = T dS. The external interactions of a reversible 
heat source accordingly are fully described by its heat capacity C( T) (the 
definition of the reversible heat source implies that this heat capacity is at 
constant volume, but we shall not so indicate by an explicit subscript). 
The energy change of the reversible heat source is dU = dQ = C(T) dT 
and the entropy change is dS = [C(T)/T] dT. The various transfers 
envisaged in the maximum work theorem are indicated schematically in 
Fig. 4.5. 

The proof of the maximum work theorem is almost immediate. Con-
sider two processes. Each leads to the same energy change tl.U and the 
same entropy change tl.S within the primary subsystem, for these are 
determined by the specified initial and final states. The two processes 
ditf er only in the apportionment of the energy ditf erence ( - AU) between 
the reversible work source and the reversible heat source ( - tl.U = W Rws 
+ QRHs)- But the process that delivers the maximum possible work to the 
reversible work source correspondingly delivers the least possible heat to 
the reversible heat source, and therefore leads to the least possible entropy 
increase of the reversible heat source ( and thence of the entire system). 

1The use of the term source might be construed as biasmg the terminology m favor of extractwn of 
heat, as contrasted with 1,yectwn; such a bias is not intended. 
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The absolute minimum of ~S 10,a1, for all possible processes, is attained 
by any reversible process ( for all of which ~S 10,a1 = 0). 

To recapitulate, energy conservation requires ~U + WRws + QR11s = 0. 
Wah ~U fixed, to maximize WRws is to minimize QRHS· This is achieved by 
minimizing s:i;:~ (since SRHS increases monotonically with positive heat 
input QRHs). The minimum S~~J therefore is achieved by minimum ~S 10 ,a1, 

or by ~S 101a1 = 0. 
The foregoing "descriptive" proof can be cast into more formal lan-

guage, and this is particularly revealing in the case in which the initial and 
final states of the subsystem are so close that all differences can be 
expressed as differentials. Then energy conservation requires 

dU + dQRHS + dWRWS = 0 (4.6) 

whereas the entropy maximum principle requires 

dS = dS + dQ RHS > 0 
101 T -RHS 

(4.7) 

It follows that 

(4.8) 

The quantities on the right-hand side are all specified. In particular dS 
and dU are the entropy and energy differences of the primary subsystem 
in the specified final and initial states. The maximum work transfer 
dWRws corresponds to the equality sign in equation 4.8, and therefore in 
equation 4.7 (dS 101 = 0). 

It is useful to calculate the maximum delivered work which, from 
equation 4.8 and from the identity dU = dQ + dW, becomes 

( TRHS) dWRws (maximum)= -y- dQ - dU 

= [1 -(TRHs/T)](-dQ) +(-dW) (4.9) 

That is, in an infinitesimal process, the maximum work that can be de/wered 
to the reversible work source 1s the sum of: 

(a) the work ( - dW) directly extracted from the subsystem, 
(b) a fraction (1 - TRHs/T) of the heat (-dQ) directly extracted from 

the subsystem. 

The fraction (1 - T RHs/T) of the extracted heat that can be "converted" 
to work in an infinitesimal process is called the thermodynamic engine 
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efficiency, and we shall return to a discussion of that quantity in Section 
4.5. However, it generally is preferable to solve maximum work problems in 
terms of an overall accounting of energy and entropy changes (rather than to 
integrate over the thermodynamic engine efficiency). 

Returning to the total (noninfinitesimal) process, the energy conserva-
tion condition becomes 

~({ubsystem + QRHS + WRWS = 0 (4.10) 

whereas the reversibility condition is 

~Slota!= ~ssubsystem + f dQRHs/TRHS = 0 (4.11) 

In order to evaluate the latter integral it is necessary to know the heat 
capacity CRHs(T) = dQRHs/dTRHs of the reversible heat source. Given 
CRHs(T) the integral can be evaluated, and one can then also infer the net 
heat transfer QRHS· Equation 4.10 in turn evaluates WRws· Equations 4.10 
and 4.11, evaluated as described, provide the solution of all problems based 
on the maximum work theorem. 

The problem is further simplified if the reversible heat source is a 
thermal reservoir. A thermal reservoir is defined as a reversible heat source 
that is so large that any heat trans/ er of interest does not alter the tempera-
ture of the thermal reservoir. Equivalently, a thermal reservoir is a reversi-
ble heat source characterized by a fixed and definite temperature. For 
such a system equation 4.11 reduces simply to 

~S101a1 = ~Ssubsys1em + ;,:es = 0 
res 

(4.12) 

and Qres ( = QRHs) can be eliminated between equations 4.10 and 4.12, 
giving 

W RWS = T,.es~Ssubsys1em - ~({ubsys1em (4.13) 

Finally, it should be recognized that the specified final state of the 
subsystem may have a larger energy than the initial state. In that case the 
theorem remains formally true but the "delivered work" may be negative. 
This work which must be supplied to the subsystem will then be least ( the 
delivered work remains algebraically maximum) for a reversible process. 

Example 1 
One mole of an ideal van der Waals fluid is to be taken by an unspecified process 
from the state T0 , v0 to the state ~. v1. A second system is constrained to have a 
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fixed volume and its initial temperature is T20 ; its heat capacity is linear in the 
temperature 

(D = constant) 

What is the maximum work that can be delivered to a reversible work source? 

Solution 
The solution parallels those of the problems in Section 4.1 despite the slightly 
different formulations. The second system is a reversible heat source; for it the 
dependence of energy on temperature is 

U2 (T) = f C2 (T) dT = tDT 2 + constant 

and the dependence of entropy on temperature is 

J C1 (T) 
S2 (T) = -T-dT= DT+ constant 

For the primary fluid system the dependence of energy and entropy on T and v 
is given in equations 3.49 and 3.51 from which we find 

6.U = cR(T - T,) - !:. + 
I I O V V 'f 0 

6.S1 = R In(;~=:) + cR In~ 
The second system (the reversible heat source) changes temperature from T20 to 
some as yet unknown temperature T21, so that 

6.U2 = tD( T:z~ - T2i) 
and 6.S2 = D( T21 - T20 ) 

The value of T21 is determined by the reversibility condit10n 

6.S1 + 6.S2 = Rln( :~=:) + cRln + D(T 21 - T20 ) = 0 
or 

T21 = T20 - RD -11n( ;~ =: )-cRD- 1ln io 
The conservation of energy then determines the work W3 delivered to the 

reversible work source 

whence 

W3 = - [ ! D ( T2} - T2t)] - [ cR ( - T0 ) - + : ] 

where we recall that is given, whereas T21 has been found. 
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An equivalent problem, but with a somewhat simpler system (a mon-
atomic ideal gas and a thermal reservoir) is formulated in Problem 4.5-1. 
In each of these problems we do not commit ourselves to any specific 
process by which the result might be realized, but such a specific process is 
developed in Problem 4.5-2 (which, with 4.5-1, is strongly recommended 
to the reader). 

Example 2 Isotope Separation 
In the separation of U 235 and U 238 to produce enriched fuels for atomic power 
plants the naturally occurring uranium is reacted with fluorine to form uramum 
hexafluonde (UF6 ). The uranium hexafluoride is a gas at room temperature and 
atmospheric pressure. The naturally occurring mole fraction of U 235 is 0.0072, or 
0.72%. It is desired to process 10 moles of natural UF6 to produce 1 mole of 2% 
enriched matenal, leaving 9 moles of partially depleted material. The UF6 gas can 
be represented approximately as a polyatomic, multicomponent simple ideal gas 
with c = 7 /2 (equation 3.40). Assuming the separation process to be earned out 
at a temperature of 300 K and a pressure of 1 atm, and assuming the ambient 
atmosphere (at 300 K) to act as a thermal reservoir, what is the minimum amount 
of work required to carry out the enrichment process? Where does this work 
(energy) ultimately reside? 

Solution 
The problem is an example of the maximum work theorem in which the minimum 
work required corresponds to the maximum work "delivered." The initial state of 
the system is 10 moles of natural UF6 at T = 300 K and P = 1 atm. The final 
state of the system is I mole of ennched gas and 9 moles of depleted gas at the 
same temperature and pressure. The cold reservoir 1s also at the same tempera-
ture. 

We find the changes of entropy and of energy of the system. From the 
fundamental equation (3.40) we find the equations of state to be the familiar 
forms 

U=7/2NRT PV=· NRT 
These enable us to write the entropy as a function of T and P. 

S = .,ti N,so, +(; )NRln( )- NR In(~)- NR 1t x,ln x, 

Tlus last term-the "entropy of mixing" as defined followmg equation 3.40-is 
the significant term in the i~olope separation process. 

We first calculate the mole fraction of U 235 F6 m the 9 moles of depleted 
material; this 1s found to be 0.578%. Accordingly the change in entropy is 

t::.S = - R[0.02 ln 0.02 + 0.98 In 0.98] - 9R[0.00578 ln0.00578 
+0.994ln 0.994] + lOR I0.0072 In 0.0072 + 0.9928 In 0.9928) 

= - 0.0081R = - 0.067 J/K 
The gas e1ects heat. 
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There is no change in the energy of the gas, and all the energy supplied as work 
is transferred to the ambient atmosphere as heat. That work, or heat, is 

-WRws= Q,es=-TflS= 300X0.067 = 20J 

If there existed a semipermeable membrane, permeable to U 235F6 but not to 
U 238 F6 , the separation could be accomplished simply. Unfortunate1y no such 
membrane exists. The methods employed in practice are all dynamic (non-quasi-
static) processes that exploit the sma11 mass difference of the two isotopes-in 
ultracentrifuges, in mass spectrometers, or in gaseous diffusion. 

PROBLEMS 

4.5-1. One mole of a monatomic ideal gas is contained in a cylinder of volume 
10- 3 m3 at a temperature of 400 K. The gas is to be brought to a final state of 
volume 2 X 10- 3 m3 and temperature 400 K. A thermal reservoir of temperature 
300 K is available, as is a reversible work source. What is the maximum work that 
can be delivered to the reversible work source? 

Answer: 
WRws = 300 Rln2 

4.5-2. Consider the following process for the system of Problem 4.5-1. The ideal 
gas is first expanded adiabatically (and isentropically) until its temperature falls 
to 300 K; the gas does work on the reversible work source in this expansion. The 
gas is then expanded while in thermal contact with the thermal reservoir. And 
finally the gas is compressed adiabatically until its volume and temperature reach 
the specified values (2 X 10- 3 m3 and 400 K). 
a) Draw the three steps of this process on a T - V diagram, giving the equation 
of each curve and labelling the numerical coordinates of the vertices. 
b) To what volume must the gas be expanded in the second step so that the 
third (adiabatic) compression leads to the desired final state? 
c) Calculate the work and heat transfers in each step of the process and show 
that the overall results are identical to those obtained by the general approach of 
Example l. 

4.5-3. Describe how the gas of the preceding two problems could be brought to 
the desired final state by a free expansion. What are the work and heat transfers 
in this case? Are these results consistent with the maximum work theorem? 
4.5-4. The gaseous system of Problem 4.5-1 is to be restored to its initial state. 
Both states have temperature 400 K, and the energies of the two states are equal 
(U = 600 R). Need any work be supplied, and if so, what is the minimum 
supplied work? Note that the thermal reservoir of temperature 300 K remains 
accessible. 
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4.5-5. If the thermal reservoir of Problem 4.5-1 were to be replaced by a 
reversible heat source having a heat capacity of the form 

and an initial temperature of T RHs,o = 300 K, again calculate the maximum 
delivered work. 

Before doing the calculation, would you expect the delivered work to be greater, 
equal to, or smaller than that calculated in Prob. 4.5-1? Why? 
4.5-6. A system can be taken from state A to state B (where SB= SA) either (a) 
directly along the adiabat S = constant, or ( b) along the isochore AC and the 
isobar CB. The difference in the work done by the system is the area enclosed 
between the two paths in a P-V diagram. Does this contravene the statement that 
the work delivered to a reversible work source is the same for every reversible 
process? Explain! 
4.5-7. Consider the maximum work theorem in the case in which the specified 
final state of the subsystem has lower energy than the initial state. Then the 
essential logic of the theorem can be summarized as follows: "Extraction of heat 
from the subsystem decreases its entropy. Consequently a portion of the extracted 
heat must be sacrificed to a reversible heat source to effect a net increase in 
entropy; otherwise the process will not proceed. The remainder of the extracted 
heat is available as work." 

Similarly summarize the essential logic of the theorem in the case in which the 
final state of the subsystem has larger energy and larger entropy than the initial 
state. 
4.5-8. If SB < SA and VB> VA does this imply that the delivered work is 
negative? Prove your assertion assuming the reversible heat source to be a thermal 
reservoir. 

Does postulate III, which states that S is a monotonically increasing function 
of V, disbar the conditions assumed here? Explain. 
4.5-9. Two identical bodies each have constant and equal heat capacities (C 1 = 
C2 = C, a constant). In addition a reversible work source is available. The initial 
temperatures of the two bodies are TIO and T20 • What is the maximum work that 
can be delivered to the reversible work source, leaving the two bodies in thermal 
equilibrium? What is the corresponding equilibrium temperature? Is this the 
minimum attainable equilibrium temperature, and if so, why? What is the 
maximum attainable equilibrium temperature? 

For C = 8 J/K, TIO= 100°C and T20 = 0°C calculate the maximum delivered 
work and the possible range of final equilibrium temperature. 

Answer: 
7tnun = 46oc 7tmax = 500c 

wmax = C[~ - ~]2 = 62.2J 
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4.5-10. Two identical bodies each have heat capacities (at constant volume) of 
C(T) = a/T 

The initial temperatures are TIO and T20 , with T20 > T10 . The two bodies are to be 
brought to thermal equilibrium with each other (maintaining both volumes 
constant) while delivering as much work as possible to a reversible work source. 
What is the final equilibrium temperature and what is the maXImum work 
delivered to the reversible work source? 

Evaluate your answer for Tio= TIO and for Tio= 2T 10• 

Answer: 
W = a ln(9 /8) if T20 = 2T 10 

4.5-11. Two bodies have heat capacities (at constant volume) of 
C1 = aT 
C2 = 2bT 

The initial temperatures are T10 and T20 , with T20 > T10• The two bodies are to be 
brought to thermal equilibrium (mamtaining both volumes constant) while de-
livering as much work as possible to a reversible work source. What is the final 
equilibrium temperature and what is the (maximum) work delivered to the 
reversible work source? 
4.5-12. One mole of an ideal van der Waals fluid is contained in a cylinder fitted 
with a piston. The initial temperature of the gas is T, and the initial volume is v,. 
A reversible heat source with a constant heat capacity C and with an initial 
temperature T0 is available. The gas is to be compressed to a volume of v1 and 
brought into thermal equilibrium with the reversible heat source. What is the 
maximum work that can be delivered to the reversible work source and what is 
the final temperature? 

Answer: 

=[(~)R cR ]1/(cR+C) 
1j v-b T,To 

'f 

4.5-13. A system has a temperature-independent heat capacity C. The system is 
initially at temperature T, and a heat reservoir is available, at temperature T,, 
(with T,, < T,). Find the maximum work recoverable as the system is cooled to the 
temperature of the reservoir. 
4.5-14. If the temperature of the atmosphere is 5°C on a winter day and if 1 kg of 
water at 90°C is available, how much work can be obtained as the water is cooled 
to the ambient temperature? Assume that the volume of the water is constant, and 
assume that the molar heat capacity at constant volume is 75 J/mole K and is 
independent of temperature. 

Answer: 
45 X 103J 
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4.5-15. A rigid cylinder contains an internal adiabatic piston separating it into 
two chambers, of volumes V.o and V20 • The first chamber contains one mole of a 
monatomic ideal gas at temperature T10• The second chamber contains one mole 
of a simple diatomic ideal gas (c = 5/2) at temperature T20 • ln addition a thermal 
reservoir at temperature is available. What is the maximum work that can be 
delivered to a reversible work source, and what are the corresponding volumes 
and temperatures of the two subsystems? 
4.5-16. Each of three identical bodies has a temperature-independent heat capac-
ity C. The three bodies have initial temperatures T3 > T2 > T1• What is the 
maximum amount of work that can be extracted leaving the three bodies at a 
common final temperature? 
4.5-17. Each of two bodies has a heat capacity given by 

C =A+ 2BT 
where A = 8 J/K and B = 2 x 10- 2 J/K 2• If the bodies are initially at 
temperatures of 200 K and 400 K, and if a reversible work source is available, 
what is the minimum final common temperature to which the two bodies can be 
brought? If no work can be extracted from the reversible work source what is the 
maximum final common temperature to which the two bodies can be brought? 
What is the maximum amount of work that can be transferred to the reversible 
work source? 

Answer: 
Tmm = 293K 

4.5-18. A particular system has the equations of state 

T = As/v 112 and P = T 2 /4Av 1li 

where A is a constant. One mole of this system is initially at a temperature T1 and 
volume V1. It is desired to cool the system to a temperature T2 while compressing 
it to volume Vi (Ti< T1; Vi< V1). A second system is available. It is initially at a 
temperature (~ < T2 ). Its volume is kept constant throughout, and its heat 
capacity is 

Cv = BT 1i2 ( B = constant) 

Whal is the minimum amount of work that must be supplied by an external agent 
to accomplish this goal? 
4.5-19. A particular type of system obeys the equations 

u 
T = - and P = avT b 

where a and b are constants. Two such systems, each of 1 mole, are initially at 
temperatures T1 and T2 (with Ti> T1) and each has a volume v0 • The systems are 
to be brought to a common temperature 7j. with each at the same final volume v1. 
The process is to be such as to deliver maximum work to a reven,ible work source. 
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a) What is the final temperature~? 
b) How much work can be delivered? Express the result in terms of Ti, T2 , v0 , v1, 
and the constants a and b. 
4.5-20. Suppose that we have a system in some initial state (we may think of a 
tank of hot, compressed gas as an example) and we wish to use it as a source of 
work. Practical considerations require that the system be left finally at atmo-
spheric temperature and pressure, in equilibrium with the ambient atmosphere. 
Show, first, that the system does work on the atmosphere, and that the work 
actually available for useful purposes is therefore less than that calculated by a 
straightforward application of the maximum work theorem. In engineering 
parlance this net available work is called the "availability". 
a) Show that the availability is given by 

Availability = { U0 + PatrFo - TatmSo) - ( {1t + Palm~ - T..1mS/) 
where the subscript f denotes the final state, in which the pressure is Paim and the 
temperature is Ta,m· 
b) If the original system were to undergo an internal chemical reaction during the 
process considered, would that invalidate this formula for the availability? 
4.5-21. An antarctic meteorological station suddenly loses all of its fuel. It has N 
moles of an inert "ideal van der Waals fluid" at a high temperature Th and a high 
pressure Ph. The (constant) temperature of the environment 1s T0 and the 
atmospheric pressure is P0 • If operation of the station requires a continuous 
power £?J', what is the longest conceivable time, t max, that the station can operate? 
Calculate tmax in terms of Th, T0 , Ph, P0 , 9, N and the van der Waals constants a, 
b, and c. 

Note that this is a problem in availability, as defined and discussed in Problem 
4.5-20. In giving the solution it is not required that the molar volume vh be solved 
explicitly in terms of Th and Ph; it is sufficient simply to designate it as vh(Th, Ph) 
and similarly for v0 (T0 , P0 ). 

4.5-22. A "geothermal" power source is available to drive an oxygen production 
plant. The geothermal source is simply a well containing 103 m3 of water, initially 
at 100°C; nearby there is a huge ("infinite") lake at 5°C. The oxygen is to be 
separated from air, the separation being carried out at 1 atm of pressure and at 
20°C. Assume air to be! oxygen and ! nitrogen (in moie fractions), and assume 
that it can be treated as a mixture of ideal gases. How many moles of 0 2 can be 
produced in principle (i.e., assuming perfect thermodynamic efficiency) before 
exhausting the power source? 

4-6 COEFFICIENTS OF ENGINE, 
REFRIGERATOR, AND HEAT PUMP PERFORMANCE 

As we saw in equations 4.6 and 4.7, m an infinitesimal reversible 
process involving a "hot" subsystem, a "cold" reversible heat source, and a 
reversible work source 

(dQh + dWh) + dQC + dWRWS = 0 (4.14) 


