
8 
STABILITY OF 

THERMODYNAMIC SYSTEMS 

8-1 INTRINSIC STABILITY OF THERMODYNAMIC SYSTEMS 

The basic extremum principle of thermodynamics implies both that 
dS = 0 and that d 2S < 0, the first of these conditions stating that the 
entropy is an extremum and the second stating that the extremum is, in 
particular, a maximum. We have not yet fully exploited the second 
condition, which determines the stability of predicted equilibrium states. 
Similarly, in classical mechanics the stable equilibrium of a rigid pendu-
lum is at the position of minimum potential energy. A so-called" unstable 
equilibrium" exists at the inverted point where the potential energy is 
maximum. 

Considerations of stability lead to some of the most interesting and 
significant predictions of thermodynamics. In this chapter we investigate 
the conditions under which a system is stable. In Chapter 9 we consider 
phase transitions, which are the consequences of instability. 

Consider two identical subsystems, each with a fundamental equation 
S = S( U, V, N ), separated by a totally restrictive wall. Suppose the de-
pendence of Son U to be qualitatively as sketched in Fig. 8.1. If we were 
to remove an amount of energy t::.U from the first subsystem and transfer 
it to the second subsystem the total entropy would change from its initial 
value of 2S( U, V, N) to S( U + t::.U, V, N) + S( U - tJ.U, V, N ). With the 
shape of the curve shown in the figure the resultant entropy would be 
larger than the initial entropy! If the adiabatic restraint were removed in 
such a system energy would flow spontaneously across the wall; one 
subsystem thereby would increase its energy (and its temperature) at the 
expense of the other. Even within one subsystem the system would find it 
advantageous to transfer energy from one region to another, developing 
internal inhomogeneities. Such a loss of homogeneity is the hallmark of a 
phase transition. 



204 Stabibty of Thermodynamic System,· 

S(U+AU) 

[S(U+ AU)+ S(.J-AU)) 

FIGURE 8.1 

S(U) 
S(U-AU) 

U-AU u U+AU 

For a convex fundamental relation, as shown, the average entropy is increased by transfer 
of energy between two subsystems; such a system is unstable. 

It is evident from Fig. 8.1 that the condition of stability is the concavity 
of the entropy. 1 

s(u + !).U, V, N) + S(U - !).U, V, N) 2S(U, V, N} 

For !).U---+ 0 this condition reduces to its differential form 

-- <0 ( iJ2S) 
au2 v.N -

(for all !).) 

(8.1) 

(8.2) 

However this differential form is less restrictive than the concavity condi-
tion (8.1), which must hold for all !).U rather than for !).U---+ 0 only. 

It is evident that the same considerations apply to a transfer of volume 

S(U, V + /).V, N) + S(U, V - !).V, N) 2S(U, V, N) (8.3) 

or in differential form 

-- <0 ( a2s) 
av2 u,N -

(8.4) 

A fundamental equation that does not satisfy the concavity conditions 
might be obtained from a statistical mechanical calculation or from 

1R. B. Griffiths, J. Math. Phys. S, 1215 (1964). L. Galgani and A. Scolll, Phys,ca 40, 150(1968); 
42, 242 (1969); Pure and Appl Chem. 22, 2.29 (1970). 



t 
s 

x-i 

lntrms1c Stah1/1ty of Thermodynamic Systems 205 

FIGURE 82 
The underlying fundamental relation ABCDEFG is unstable. The stable fundamental 
relation is ABHFG. Points on the straight line BHF correspond to inhomogeneous 
combinations of the two phases at B and F. 

extrapolation of experimental data. The stable thermodynamic fundamen-
tal equation is then obtained from this "underlying fundamental equa-
tion" by the construction shown in Fig. 8.2. The family of tangent lines 
that lie everywhere above the curve (the superior tangents) are drawn; the 
thermodynamic fundamental equation is the envelope of these superior tan-
gent lines. 

In Fig. 8.2 the portion BCDEF of the underlying fundamental relation 
is unstable and is replaced by the straight line BHF. It should be noted 
that only the portion CDE fails to satisfy the differential (or "local") form 
of the stability condition (8.2), whereas the entire portion BCDEF violates 
the global form (8.1). The portions of the curve BC and EF are said to be 
"locally stable" but "globally unstable." 

A point on a straight portion ( BHF in Fig. 8.2) of the fundamental 
relation corresponds to a phase separation in which part of the system is 
in state B and part in state F, as we shall see in some detail in Chapter 9. 

In the three-dimensional S-V-V subspace the global condition of 
stability requires that the entropy surface S( V, V, ... ) lie everywhere 
below its tangent planes. That is, for arbitrary AV and AV 

S(V + AV, V + AV, N) + S(V - AV, V- AV, N) 2S(V, V, N) 

(8.5) 

from which equations 8.2 and 8.4 again follow, as well as the additional 
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requirement (see Problem 8.1-1) that 

,J2s a2s -(~) 2 >-au2 av2 au av ,..... 0 (8.6) 

We shall soon obtain this equation by an alternative method, by applying 
the analogue of the simple curvature condition 8.2 to the Legendre 
transforms of the entropy. 

To recapitulate, stability requires that the entropy surface lie every-
where below its family of tangent planes. The local conditions of stability 
are weaker conditions. They require not only that ( a2s / au2) v, N and 
(a 2SjaV 2 )u,N be negative, but that [(a 2S/aU 2 )(a 2S/aV 2 }) -

( a2S/ au aV) 2must be positive. The condition a2S I au2 0 ensures that 
the curve of intersection of the entropy surface with the plane of constant 
V (passing through the equilibrium point) have negative curvature. The 
condition a2s / av2 < 0 similarly ensures that the curve of intersection of 
the entropy surface with the plane of constant U have negative curvature. 
These two "partial curvatures" are not sufficient to ensure concavity, for 
the surface could be "fluted," curving downward along the four directions 
± U and ± V, but curving upward along the four diagonal directions 
(between the U and V axes). It is this fluted structure that is forbidden by 
the third differential stability criterion (8.6). 

In physical terms the local stability conditions ensure that inhomogenei-
ties of either u or v separately do not increase the entropy, and also that a 
coupled inhomogeneity of u and v together does not increase the entropy. 

For magnetic systems analogous relations hold, with the magnetic 
moment replacing the volume. 2 ' 

Before turning to the full physical implications of these stability condi-
tions it is useful first (Section 8.2) to consider their analogues for other 
thermodynamic potentials. We here take note only of the most easily 
interpreted inequality ( equation 8.3), which suggests the type of informa-
tion later to be inferred from all the stability conditions. Equation 8.2 
requires that 

( a2s) __ l ( ar) ___ 1_ 0 (8_7) au2 V,N - T2 au V,N - NT 2c.,__, 

whence the molar heat capacity must be positive in a stable system. The 
remaining stability conditions will place analogous restrictions on other 
physically significant observables. 

Finally, and in summary, in an r + 2 dimensional thermodynamic 
space ( S, X0 , Xi, ... , Xr) stability requires that the entropy hyper-surface lie 
everywhere below its family of tangent hyper-planes. 

2 R B Gnffiths, J Math. Phys 5, 121~ (1964) 
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PROBLEMS 

8.1-1. To establish the inequality 8.6 expand the left-hand side of 8.5 in a Taylor 
series to second order in llU and llV. Show that this leads to the condition 

- Suu(llV)2 + 2SuvllUllV + Svv(llV) 2 0 

Recalling that Suu = a2s;au2 :c;; 0, show that this can be written in the form 

(SuullU + SuvllV) 2 +(SuuSvv - Slv )(llV) 2 ;;:,: O 
and that this condition in turn leads to equation 8.6. 
8.1-2. Consider the fundamental equation of a monatomic ideal gas and show 
that S is a concave function of V and V, and also of N. 

8-2 STABILITY CONDITIONS FOR 
THERMODYNAMIC POTENTIALS 

The reformulation of the stability criteria in energy representation 
requires only a straightforward transcription of language. Whereas the 
entropy is maximum, the energy is minimum; thus the concavity of the 
entropy surface is replaced by convexity of the energy surface. 

The stable energy surface lies above its tangent planes 

U(S + .1.S, V + .1.V, N) + U(S - .1.S, V - .1.V, N) 2U(S, V, N) 

(8.8) 

The local conditions of convexity become 

av2 

and for cooperative variations of S and V 

a2u a2u -( a2u )2 > 0 as2 av2 as av -

(8.9) 

(8.10) 

This result can be extended easily to the Legendre transforms of the 
energy, or of the entropy. We first recall the properties of Legendre 
transformations (equation 5.31) 

P= au 
iJX and X= iJU [ P] 

aP (8.11) 
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whence 

ax 
oP = aP2 a2u 

(8.12) 

ax2 

Hence the sign of o2U[P]/oP 2 is the negative of the sign of o2U/oX 2• 

If U is a convex function of X then U[P] is a concave function of P. It 
follows that the Helmholtz potential is a concave function of the tempera-
ture and a convex function of the volume 

-- <0 ( 02F) ar2 v.N -
-- >0 ( o2F) 
av2 T.N -

(8.13) 

The enthalpy is a convex function of the entropy and a concave function 
of the pressure 

-- >0 ( 02H) as2 r.N -
-- <0 ( 02H) oP2 S,N -

(8.14) 

The Gibbs potential is a concave function of both temperature and 
pressure 

-- <O ( 02G) ar2 r.N -
-- <0 ( 02G) oP2 T,N -

(8.15) 

In summary, for constant N the thermodynamic potentials (the energy 
and its Legendre transforms) are convex functions of their extensive varia-
bles and concave functions of their intensive variables. Similarly for constant 
N the Massieu functions (the entropy and its Legendre transforms) are 
concave functions of their extensive variables and convex functions of their 
intensive variables. 

PROBLEMS 

8.2-1. a) Show that in the region X > 0 the function Y = X" is concave for 
0 < n < I and convex for n < 0 or n > 1. 

The following four equations are asserted to be fundamental equations of 
physical systems. _ 

(b) F = A( N:;)1 
cs2pl 

(d) H =-;:;-
l 

( e) U = D ( si4 r 
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Which of these equations violate the criteria of stability? Assume A, B, C, and D 
to be positive constants. Recall the "fluting condition" (equation 8.10). 
8.2-2. Prove that 

( i) 2F) 
av2 T 

a2u a2u _ ( a2u )2 

as2 av2 asav 
a2u 
as2 

Hint: Note that (iJ 2F/iJV 2 h= -(iJP/iJVh, and consider P formally to be a 
function of S and V. 

This identity casts an interesting perspective on the formalism. The quantity in 
square brackets measures the curvature of the energy along a direction inter-
mediate between the S and V axes (recall the discussion of "fluting" after 
equation 8.6). The primary curvature condition on F, along the V axis, is 
redundant with the "fluting" condition on U. Only primary curvature conditions 
need be invoked if all potentials are considered. 

8.2-3. Show that stability requires equations 8.15 and 

( a2G)( a2G)-(~)2 ;,,:O ar 2 ap2 araP 
(Recall Problem 8.1-1.) 

8-3 PHYSICAL CONSEQUENCES OF STABILITY 

We turn finally to a direct interpretation of the local stability criteria in 
terms of limitations on the signs of quantities such as c,,, s,, a, and "r 
The first such inference was obtained in equations 8.2 or 'tJ.7, where we 
found that c,, 0. Similarly, the convexity of the Helmholtz potential 
with respect to the volume gives 

(8.16) 

or 

(8.17) 

The fact that both c,, and KT are positive (equations 8.7 and 8.17) has 
further implications which become evident when we recall the identities of 
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Problem 3.9-5 

(8.18) 

and 
c,, 

(8.19) 

From these it follows that stability requires 

(8.20) 

and 

(8.21) 

Thus both heat capacities and both compressibilities must be positive in 
a stable system. Addition of heat, either at constant pressure or at constant 
volume, necessarily increases the temperature of a stable system-the more 
so at constant volume than at constant pressure. And decreasing the volume, 
either isothermally or isentropical/y, necessarily increases the pressure of a 
stable system-the more so isothermally than isentropically. 

PROBLEMS 

8.3-1. Explain on intuitive grounds why cP c,, and why Kr~ "s· 
Hint: Consider the energy input and the energy output during constant-pressure 
and constant-volume heating processes. 
8.3-2. Show that the fundamental equation of a monatomic ideal gas satisfies the 
criteria of intrinsic stability. 
8.3-3. Show that the van der Waals equation of state does not satisfy the criteria 
of intrinsic stability for all values of the parameters. Sketch the curves of P versus 
V for constant T (the isotherms of the gas) and show the region of local 
instability. 

8-4 LE CHATELIER'S PRINCIPLE; THE QUALITATIVE EFFECT 
OF FLUCTUATIONS 

The physical content of the stability criteria is known at Le Chatelier 's 
Principle. According to this principle the criterion for stability is that any 
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inhomogeneity that somehow develops in a system should induce a process 
that tends to eradicate the inhomogeneity. 

As an example, suppose that a container of fluid is in equilibrium and 
an incident photon is suddently absorbed at some point within it, locally 
heating the fluid slightly. Heat flows away from this heated region and, by 
the stability condition (that the specific heat is positive}, this flow of heat 
tends to lower the local temperature toward the ambient value. The initial 
homogeneity of the system thereby is restored. 

Similarly, a longitudinal vibrational wave in a fluid system induces local 
regions of alternately high and low density. The regions of increased 
density, and hence of increased pressure, tend to expand, and the regions 
of low density contract. The stability condition (that the compressibility is 
positive) ensures that these responses tend to restore the local pressure 
toward homogeneity. 

In fact local inhomogeneities always occur in physical systems even in 
the absence of incident photons or of externally induced vibrations. In a 
gas, for instance, the individual molecules move at random, and by pure 
chance this motion produces regions of high density and other regions of 
low density. 

From the perspective of statistical mechanics all systems undergo 
continual local fluctuations. The equilibrium state, static from the view-
point of classical thermodynamics, is incessantly dynamic. Local inhomo-
geneities continually and spontaneously generate, only to be attenuated 
and dissipated in accordance with the Le Chatelier principle. 

An informative analogy exists between a thermodynamic system and a 
model of a marble rolling within a "potential well." The stable state is at 
the minimu1n of the surface. The criterion of stability is that the surface 
be convex. 

In a slightly more sophisticated viewpoint we can conceive of the 
marble as being subject to Brownian motion-perhaps being buffeted by 
some type of random collisions. These are the mechanical analogues of the 
spontaneous fluctuations that occur in all real systems. The potential 
minimum does not necessarily coincide with the instantaneous position of 
the system, but rather with its "expected value"; it is this "expected 
value" that enters thermodynamic descriptions. The curvature of the 
potential well then plays a crucial and continual role, restoring the system 
toward the "expected state" after each Brownian impact (fluctuation). 
This" induced restoring force" is the content of the Le Chatelier principle. 

We note in passing that in the atypical but important case in which the 
potential well is both shallow and asymmetric, the time-averaged position 
may deviate measurably from the "expected state" at the potential mini-
mum. In such a case classical thermodynamics makes spurious predic-
tions which deviate from observational data, for thermodynamic measure-
ments yield average values (recall Chapter 1). Such a pathological case 
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arises at higher-order phase transitions-the correct theory of which was 
developed in the 1970s. We shall explore that area in Chapter 11. 

8-5 THE LE CHA TELIER-BRAUN PRlNCIPLE 

Returning to the physical interpretation of the stability criteria, a more 
subtle insight than that given by the Le Chatelier principle is formulated 
in the Le Chatelier-Braun principle. 

Consider a system that is taken out of equilibrium by some action or 
fluctuation. According to the Le Chatelier principle the perturbation 
directly induces a process that attenuates the perturbation. But various 
other secondary processes are also induced, indirectly. The content of the 
Le Chatelier-Braun principle is that these indirectly induced processes 
also act to attenuate the initial perturbation. 

A simple example may clarify the principle. Consider a subsystem 
contained within a cylinder with diathermal walls and a loosely fitting 
piston, all immersed within a "bath" (a thermal and pressure reservoir). 
The piston is moved outward slightly, either by an external agent or by a 
fluctuation. The primary effect is that the internal pressure is 
decreased-the pressure difference across the piston then acts to push it 
inward; this is the Le Chatelier principle. A second effect is that the initial 
expansion dV alters the temperature of the subsystem; dT = 
( iJT / iJV)s dV = -(Ta./Nc,,KT) dV. This change of temperature may have 
either sign, depending on the sign of a. Consequently there is a flow of 
heat through the cylinder walls, inward if a is positive and outward if a is 
negative (sign dQ = sign a). This flow of heat, in turn, tends to change the 
pressure of the system: dP = (1/T)(aP;as)vdQ = (a./NT 2cllKT)dQ. 
The pressure is increased for either sign of a. Thus a secondary induced 
process (heat flow) also acts to diminish the initial perturbation. This is 
the Le Chatelier-Braun principle. 

To demonstrate both the Le Chatelier and the Le Chatelier-Braun 
principles formally, let a spontaneous fluctuation dX{ occur in a com-
posite system. This fluctuation is accompanied by a change in the inten-
sive parameter P1 of the subsystem 

I aP1 i dP = ~dX 
i ax i 

l 
(8.22) 

The fluctuation dX{ also alters the intensive parameter P2 

I iJP1 ! dP = ~dX 
i ax1 i 

(8.23) 
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Now we can inquire as to the changes in X1 and X2 which are driven by 
these two deviations dP{ and dP{. We designate the driven change in dX1 
by dX;, the superscript indicating "response." The signs of dX[ and dX2 
are determined by the minimization of the total energy ( at constant total 
entropy) 

= dP{ dX[ + dP[ dX2 :s; 0 (8.25) 

Hence, since dX[ and dX~ are independent 

dPfdXr < 0 1 1 - (8.26) 

and 

dPf dXr < 0 2 2 - (8.27) 

From the first of these and equation 8.22 

(8.28) 

and similarly 

(8.29) 

We examine these two results in turn. The first, equation 8.28, is the 
formal statement of the Le Chatelier principle. For multiplying by 
d1\/dX 1, which is positive by virtue of the convexity criterion of stability, 

(8.30) 

or 

dpt dPr<l> < 0 I 1 - (8.31) 

That is, the response dX[ produces a change dP[O> in the intensive 
parameter P 1 that is opposite in sign to the change dP{ induced by the 
initial fluctuation. 
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The second inequality, (8.29}, can be rewritten by the Maxwell relation 

in the form 

oP2 oP1 

ax1 = ax2 

Then, multiplying by the positive quantity dP1/dX 1 

or 

(8.32) 

(8.33) 

(8.34) 

(8.35) 

That is, the response dX; produces a change dP1<2> in the intensive 
parameter P1 which is opposite in sign to the change in P1 directly 
induced by the initial fluctuation. This is the Le Chatelier-Braun princi-
ple. 

Finally, it is of some interest to note that equation 8.33 is subject to 
another closely correlated interpretation. Multiplying by the positive 
quantity dP2/dX 2 

(8.36) 

or 

(8.37) 

That is, the response in X 2 produces a change in P2 opposite in sign to 
the change induced by the initial fluctuation in X1. 

PROBLEMS 

8.5-1. A system is in equilibrium with its environment at a common temperature 
and a common pressure. The entropy of the system is increased slightly (by a 
fluctuation in which heat flows into the system, or by the purposeful injection of 
heat into the system). Explain the implications of both the Le Chatelier and the 
Le Chatelier-Braun principles to the ensuing processes, proving your assertions 
in detail. 
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9-1 FIRST-ORDER PHASE TRANSITIONS 
IN SINGLE COMPONENT SYSTEMS 

Ordinary water is liquid at room temperature and atmospheric pressure, 
but if cooled below 273.15 Kit solidifies; and if heated above 373.15 Kit 
vaporizes. At each of these temperatures the material undergoes a pre-
cipitous change of properties-a "phase transition." At high pressures 
water undergoes several additional phase transitions from one solid form 
to another. These distinguishable solid phases, designated as "ice I," "ice 
11," "ice III," ... , differ in crystal structure and in essentially all thermo-
dynamic properties (such as compressibility, molar heat capacity, and 
various molar potentials such as u or /). The "phase diagram" of water is 
shown in Fig. 9.1. 

Each transition is associated with a linear region in the thermodynamic 
fundamental relation (such as BHF in Fig. 8.2), and each can be viewed 
as the result of failure of the stability criteria (convexity or concavity) in 
the underlying fundamental relation. 

In this section we shall consider systems for which the underlying 
fundamental relation is unstable. By a qualitative consideration of fluctua-
tions in such systems we shall see that the fluctuations are profoundly 
influcrz..ced by the details of the underlying fundamental relation. In contrast, 
the average values of the extensive parameters reflect only the stable thermo-
dynamic fundamental relation. 

Consideration of the manner in which the form of the underlying 
fundamental relation influences the thermodynamic fluctuations will pro-
vide a physical interpretation of the stability considerations of Chapter 8 
and of the construction of Fig. 8.2 (in which the thermodynamic funda-
mental relation is constructed as the envelope of tangent planes). 

A simple mechanical model illustrates the considerations to follow by 
an intuitively transparent analogy. Consider a semicircular section of pipe, 
closed at both ends. The pipe stands vertically on a table, in the form of 

-, I'< 
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Phase diagram of water. The region of gas-phru,e stab1hty is repre~cnted by an mdi~cerni-
bly narrow horizontal strip above the positive temperature axis in the pha~e diagram 
(small figure). The background graph is a magnification of the vertical scale to show the 
gas phase and the gas- liquid coexistence curve. 

an inverted U (Fig. 9.2). The pipe contains a freely-sliding internal piston 
separating the pipe into two sections, each of which contains one mole of 
a gas. The symmetry of the system will prove to have important conse-
quences, and to break this symmetry we consider that each section of the 
pipe contains a small metallic "ball bearing" (i.e., a small metallic sphere). 
The two ball bearings are of dissimilar metals, with different coefficients of 
thermal expansion. 

At some particular temperature, which we designate as T,, the two 
spheres have equal radii; at temperatures above T, the right-hand sphere 
is the larger. 

The piston, momentarily brought to the apex of the pipe, can fall into 
either of the two legs, compressing the gas in that leg and expanding the 
gas in the other leg. In either of these competing equilibrium states the 
pressure difference exactly compensates the effect of the weight of the 
piston. 

In the absence of the two ball bearings the two competing equilibnum 
states would be fully eqmvaltnt. But with the ball bearings present the 



FIGURE 9-2 
A simple mecharucal model. 
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more stable equilibrium position is that to the left if T > T,_, and it is that 
to the right if T < Tc. 

From a thermodynamic viewpoint the Helmholtz potential of the sys-
tem is F = U - TS, and the energy U contains the gravitational potential 
energy of the piston as well as the familiar thermodynamic energies of the 
two gases ( and, of course, the thermodynamic energies of the two ball 
bearings, which we assume to be small and/or equal). Thus the Helmholtz 
potential of the system has two local minima, the lower minimum corre-
sponding to the piston being on the side of the smaller sphere. 

As the temperature is lowered through T,_ the two minima of the 
Helmholtz potential shift, the absolute minimum changing from the 
left-hand to the right-hand side. 

A similar shift of the equilibrium position of the piston from one side to 
the other can be induced at a given temperature by tilting the table-or, 
in the thermodynamic analogue, by adjustment of some thermodynamic 
parameter other than the temperature. 

The shift of the equilibrium state from one local minimum to the other 
constitutes a first-order phase transition, induced either by a change in 
temperature or by a change in some other thermodynamic parameter. 

The two states between which a first-order phase transition occurs are 
distinct, occurring at separate regions of the thermodynamic configuration 
space. 

To anticipate "critical phenomena" and "second-order phase transi-
tions" (Chapter 10) it is useful briefly to consider the case in which the 
ball bearings are identical or absent. Then at low temperatures the two 
competing minima are equivalent. However as the temperature is in-
creased the two equilibrium positions of the piston rise in the pipe, 
approaching the apex. Above a particular temperature T,__,, there is only 
one equilibrium position, with the piston at the apex of the pipe. In-
versely, lowering the temperature from T > T,__, to T < T,_ ,, the single 
equilibrium state bifurcates into two (symmetric) eqmlibrium states. The 
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temperature Tcr is the "critical tempe1 ,uure," and the transition at Tcr is a 
"second-order phase transition." 

The states between which a second-order phase transition occurs are 
contiguous states in the thermodynamic configuration space. 

In this chapter we consider first-order phase transitions. Second-order 
transitions will be discussed in Chapter 10. We shall there also consider 
the "mechanical model" in quantitative detail, whereas we here discuss it 
only qualitatively. 

Returning to the case of dissimilar spheres, consider the piston residing 
in the higher minimum-that is, in the same side of the pipe as the larger 
ball bearing. Finding itself in such a minimum of the Helmholtz potentia~ 
the piston will remain temporarily in that minimum though undergoing 
thermodynamic fluctuations ("Brownian motion"). After a sufficiently 
long time a giant fluctuation will carry the piston "over the top" and into 
the stable minimum. It then will remain in this deeper minimum until an 
even larger (and enormously less probable) fluctuation takes it back to the 
less stable minimum, after which the entire scenario is repeated. The 
probability of fluctuations falls so rapidly with increasing amplitude (as' 
we shall see in Chapter 19) that the system spends almost all of its time in 
the more stable minimum. All of this dynamics is ignored by macroscopic 
thermodynamics, which concerns itself only with the stable equilibrium 
state. 

To discuss the dynamics of the transition in a more thermodynamic 
context it is convenient to shift our attention to a familiar thermodynamic· 
system that again has a thermodynamic potential with two local minimum 
separated by an unstable intermediate region of concavity. Specifically we 
consider a vessel of water vapor at a pressure of 1 atm and at a 
temperature somewhat above 373.15 K (i.e., above the "normal boiling 
point" of water). We focus our attention on a small subsystem-a 
spherical region of such a (variable) radius that at any instant it contains 
one milligram of water. This subsystem is effectively in contact with a 
thermal reservoir and a pressure reservoir, and the condition of equi-
librium is that the Gibbs potential G(T, P, N) of the small subsystem be 
minimum. The two independent variables which are determined by the 
equilibrium conditions are the energy U and the volume V of the subsys-
tem. 

If the Gibbs potential has the form shown in Fig. 9.3, where X1 is the 
volume, the system is stable in the lower minimum. This minimum 
corresponds to a considerably larger volume ( or a smaller density) than 
does the secondary local minimum. 

Consider the behavior of a fluctuation in volume. Such fluctuations 
occur continually and spontaneously. The slope of the curve in Fig. 9.3 
represents an intensive parameter (in the present case a difference in 
pressure) which acts as a restoring "force" driving the system back toward 
density homogeneity in accordance with Le Chatelier's principle. Occa-
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FIGURE9.3 
Thermodynamic potential with multiple 
minima. 

sionally a fluctuation may be so large that it takes the system over the 
,naximum, to the region of the secondary minimum. The system then 
settles in the region of this secondary minimum-but only for an instant. 
A relatively small (and therefore much more frequent) fluctuation is all 
that is required to overcome the more shallow barrier at the secondary 
minimum. The system quickly returns to its stable state. Thus very small 
droplets of high density (liquid phase!) occasionally form in the gas, live 
briefly, and evanesce. 

If the secondary minimum were far removed from the absolute mini-
mum, with a very high intermediate barrier, the fluctuations from one 
minimum to another would be very improbable. In Chapter 19 it will be 
shown that the probability of such fluctuations decreases exponentially 
with the height of the intermediate free-energy barrier. In solid systems (in 
which interaction energies are high) it is not uncommon for multiple 
minima to exist with intermediate barriers so high that transitions from 
one minimum to another take times on the order of the age of the 
universe! Systems trapped in such secondary "metastable" minima are 
effectively in stable equilibrium ( as if the deeper minimum did not exist at 
all). 

Returning to the case of water vapor at temperatures somewhat above 
the "boiling point," let us suppose that we lower the temperature of the 
entire system. The form of the Gibbs potential varies as shown schemati-
cally in Fig. 9.4. At the temperature T4 the two minima become equal, and 
below this temperature the high density (liquid) phase becomes absolutely 
stable. Thus T4 is the temperature of the phase transition (at the pre-
scribed pressure). 

If the vapor is cooled very gently through the transition temperature the 
system finds itself in a state that had been absolutely stable but that is 
now metastable. Sooner or later a fluctuation within the system will 
"discover" the truly stable state, forming a nucleus of condensed liquid. 
This nucleus then grows rapidly, and the entire system suddenly under-
goes the transition. In fact the time required for the system to discover the 
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FIGURE 94 
Schematic vanation of Gibbs potential 
with volume (or reciprocal density) for 
various temperatures ( Ti < T2 < 7; < 
T4 < J;). The temperature T4 i~ the 
transition temperature The high density 
phase is stable below the transition tem-
perature. 

preferable state by an "exploratory" fluctuation is unobservably short in 
the case of the vapor to liquid condensation. But in the transition from 
liqmd to ice the delay time is easily observed in a pure sample. The liquid 
so cooled below its solidification (freezing) temperature is said to be 
"supercooled." A shght tap on the container, however, sets up longitudi-
nal waves with alternating regions of "condensation" and "rarefaction," 
and these externally induced fluctuations substitute for spontaneous 
fluctuations to initiate a precipitous transition. 

A useful perspective emerges when the values of the Gibbs potential at 
each of its minima are plotted against temperature. The result is as shown 
schematically in Fig. 9.5. If these minimum values were taken from Fig. 
9.4 there would be only two such curves, but any number is possible. At 
equilibrium the smallest minimum is stable, so the true Gibbs potential is 
the lower envelope of the curves shown in Fig. 9.5. The discontinuities in 
the entropy (and hence the latent heat) correspond to the discontinuities 
in slope of this envelope function. 

Figure 9.5 should be extended into an additional dimension, the ad-
ditional coordinate P playing a role analogous to T. The Gibbs potential 
is then represented by the lower envelope surface, as each of the three 

t c::, 

T-

flGURE 9 5 
Minima or the Gibbs potential as a 
function of T 
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single-phase surfaces intersect. The projection of these curves of intersec-
tion onto the P-T plane is the now familiar phase diagram (e.g., Fig. 9.1). 

A phase transition occurs as the state of the system passes from one 
envelope surface, across an intersection curve, to another envelope surface. 

The variable X,, or V in Fig. 9.4, can be any extensive parameter. In a 
transition from paramagnetic to ferromagnetic phases X1 is the magnetic 
moment. In transitions from one crystal form to another (e.g., from cubic 
to hexagonal) the relevant parameter X1 is a crystal symmetry variable. In 
a solubility transition it may be the mole number of one component. We 
shall see examples of such transitions subsequently. All conform to the 
general pattern described. 

At a first-order phase transition the molar Gibbs potential of the two 
phases are equal, but other molar potentials ( u, f, h, etc.) are discontinu-
ous across the transition, as are the molar volume and the molar entropy. 
The two phases inhabit different regions in "thermodynamic space," and 
equality of any property other than the Gibbs potential would be a pure 
coincidence. The discontinuity in the molar potentials is the defining 
property of a first-order transition. 

As shown in Fig. 9.6, as one moves along the hquid-gas coexistence 
curve away from the solid phase (i.e., toward higher temperature), the 
discontinuities in molar volume and molar energy become progressively 
smaller. The two phases become more nearly alike. Finally, at the terminus 
of the liquid-gas coexistence curve, the two phases become indistinguish-
able. The first-order transition degenerates into a more subtle transition, a 
second-order transition, to which we shall return in Chapter 10. The 
terminus of the coexistence curve is called a cntical point. 

The existence of the cntical point precludes the possibility of a sharp 
distinction between the generic term !tqwd and the generic term gas. In 
crossing the liquid-gas coexistence curve in a first-order transition we 
distinguish two phases, one of which is "clearly" a gas and one of which is 

D 

t 
c.!l 

T-+- v----
FIGURE 96 
The two minima of G correspondmg to four points on the coexistence curve. The mm1ma 
coalesce at the critical point D. 
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"clearly" a liquid. But starting at one of these (say the liquid, immediately 
above the coexistence curve) we can trace an alternate path that skirts 
around the critical point and arrives at the other state (the "gas") without 
ever encountering a phase transition! Thus the terms gas and liquid have 
more intuitive connotation than strictly defined denotation. Together 
liquids and gases constitute the fluid phase. Despite this we shall follow 
the standard usage and refer to "the liquid phase" and "the gaseous 
phase" in a liquid-gas first-order transition. 

There is another point of great interest in Fig. 9.1: the opposite 
terminus of the liquid-gas coexistence curve. This point is the coterminus 
of three coexistence curves, and it is a unique point at which gaseous, 
liquid, and solid phases coexist. Such a state of three-phase compatibility 
is a "triple point"-in this case the triple point of water. The uniquely 
defined temperature of the triple point of water is assigned the (arbitrary) 
value of 273.16 K to define the Kelvin scale of temperature (recall Section 
2.6). 

PROBLEM 

9.1-1. The slopes of all three curves in Fig. 9.5 are shown as negative. Is this 
necessary? Is there a restriction on the curvature of these curves? 

9-2 THE DISCONTINUITY IN THE ENTROPY -LA TENT HEAT 

Phase diagrams, such as Fig. 9.1, are divided by coexistence curves into 
regions in which one or another phase is stable. At any point on such a 
curve the two phases have precisely equal molar Gibbs potentials, and 
both phases can coexist. 

Consider a sample of water at such a pressure and temperature that it is 
in the "ice" region of Fig. 9.la. To increase the temperature of the ice one 
must supply roughly 2.1 kJ/kg for every kelvin of temperature increase 
(the specific heat capacity of ice). If heat is supplied at a constant rate the 
temperature increases at an approximately constant rate. But when the 
temperature reaches the "melting temperature," on the solid-liquid 
coexistence line, the temperature ceases to rise. As additional heat is 
supplied ice melts, forming liquid water at the same temperature. It 
requires roughly 335 kJ to melt each kg of ice. At any moment the amount 
of liquid water in the container depends on the quantity of heat that has 
entered the container since the arrival of the system at the coexistence 
curve (i.e., at the melting temperature). When finally the requisite amount 
of heat has been supplied, and the ice has been entirely melted, continued 
heat input again results in an increase in temperature-now at a 
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rate determined by the specific heat capacity of liquid water ("" 4.2 kJ / 
kg-K). 

The quantity of heat required to melt one mole of solid is the heat of 
fusion ( or the latent heat of fusion). It is related to the difference in molar 
entropies of the liquid and the solid phase by 

(9.1) 

where T is the melting temperature at the given pressure. 
More generally, the latent heat in any first-order transition is 

t= T!::.s (9.2) 

where T is the temperature of the transition and !::.s is the difference in 
molar entropies of the two phases. Alternatively, the latent heat can be 
written as the difference in the molar enthalpies of the two phases 

t= !::.h (9.3) 

which follows immediately from the identity h = Ts+ µ (and the fact 
that µ, the molar Gibbs function, is equal in each phase). The molar 
enthalpies of each phase are tabulated for very many substances. 

If the phase transition is between liquid and gaseous phases the latent 
heat is called the heat of vaporization, and if it is between solid and 
gaseous phases it is called the heat of sublimation. 

At a pressure of one atmosphere the liquid-gas transition (boiling) of 
water occurs at 373.15 K, and the latent heat of vaporization is then 40.7 
kJ/mole (540 caljg). 

In each case the latent heat must be put into the system as it makes a 
transition from the low-temperature phase to the high-temperature phase. 
Both the molar entropy and the molar enthalpy are greater in the 
high-temperature phase than in the low-temperature phase. 

It should be noted that the method by which the transition is induced is 
irrelevant-the latent heat is independent thereof. Instead of heating the 
ice at constant pressure (crossing the coexistence curve of Fig. 9.la 
"horizontally"), the pressure could be increased at constant temperature 
(crossing the coexistence curve" vertically"). In either case the same latent 
heat would be drawn from the thermal reservoir. 

The functional form of the liquid-gas coexistence curve for water is 
given in "saturated steam tables" -the designation "saturated" denoting 
that the steam is in equilibrium with the liquid phase. ("Superheated 
steam tables" denote compilations of the properties of the vapor phase 
alone, at temperatures above that on the coexistence curve at the given 
pressure). An example of such a saturated steam table is given in Table 
9.1, from Sonntag and Van Wylen. The properties s, u, v and h of each 
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phase are conventionally listed in such tables; the latent heat of the 
transition is the difference in the molar enthalpies of the two phases, or it 
can also be obtained as T ~s. 

Similar data are compiled in the thermophysical data literature for a 
wide variety of other materials. 

The molar volume, like the molar entropy and the molar energy, is 
discontinuous across the coexistence curve. For water this is particularly 
interesting in the case of the solid-liquid coexistence curve. It is common 
experience that ice floats in liquid water. The molar volume of the solid 
(ice) phase accordingly is greater than the molar volume of the liquid 
phase-an uncommon attribute of H 20. The much more common situa-
tion is that in which the solid phase is more compact, with a smaller molar 
volume. One mundane consequence of this peculiar property of H 20 is 
the proclivity of frozen plumbing to burst. A compensating consequence, 
to which we shall return in Section 9.3, is the possibility of ice skating. 
And, underlying all, this peculiar property of water is essential to the very 
possibility of life on earth. If ice were more dense than liquid water the 
frozen winter surfaces of lakes and oceans would sink to the bottom; new 
surface liquid, unprotected by an ice layer, would again freeze (and sink) 
until the entire body of water would be frozen solid (" frozen under" 
instead of "frozen over"). 

PROBLEMS 

9.2-1. In a particular solid-liquid phase transition the point P0 , T0 lies on the 
coexistence curve. The latent heat of vaporization at this point is t 0 • A nearby 
point on the coexistence curve has pressure P0 + p and temperature T0 + t; the 
local slope of the coexistence curve in the P-T plane is p/t. Assuming v, cp, o:, 
and "T to be known in each phase in the vicinity of the states of interest, find the 
latent heat at the point P0 + p, T0 + t. 
9.2-2. Discuss the equilibrium that eventually results if a solid is placed in an 
initially evacuated closed container and is maintained at a given temperature. 
Explain why the solid-gas coexistence curve is said to define the " vapor pressure 
of the solid" at the given temperature. 

9-3 THE SLOPE OF COEXISTENCE 
CURVES; THE CLAPEYRON EQUATION 

The coexistence curves illustrated in Fig. 9.1 are less arbitrary than is 
immediately evident; the slope dP / dT of a coexistence curve is fully 
determined by the properties of the two coexisting phases. 
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The slope of a coexistence curve is of direct physical interest. Consider 
cubes of ice at equilibrium in a glass of water. Given the ambient pressure, 
the temperature of the mixed system is determined by the liquid-solid 
coexistence curve of water; if the temperature were not on the coexistence 
curve some ice would melt, or some liquid would freeze, until the 
temperature would again lie on the coexistence curve ( or one phase would 
become depleted). At 1 atm of pressure the temperature would be 273.15 
K. If the ambient pressure were to decrease-perhaps by virtue of a 
change in altitude (the glass of water is to be served by the flight attendant 
in an airplane), or by a variation in atmospheric conditions (approach of a 
storm)-then the temperature of the glass of water would appropriately 
adjust to a new point on the coexistence curve. If AP were the change in 
pressure then the change in temperature would be AT= AP/(dP/dT)cc• 
where the derivative in the denominator is the slope of the coexistence 
curve. 

Ice skating, to which we have made an earlier allusion, presents another 
interesting example. The pressure applied to the ice directly beneath the 
blade of the skate shifts the ice across the solid-liqujd coexistence curve 
(vertically upward in Fig. 9.la), providing a lubricating film of liquid on 
which the skate slides. 

The possibility of ice skating depends on the negative slope of the 
liquid-solid coexistence curve of water. The existence of the ice on the 
upper surface of the lake, rather than on the bottom, reflects the larger 
molar volume of the solid phase of water as compared to that of the liquid 
phase. The connection of these two facts, which are not independent, lies 
in the Clapeyron equation, to which we now turn. 

Consider the four states shown in Fig. 9.7. States A and A' are on the 
coexistence curve, but they correspond to different phases (to the left-hand 
and right-hand regions respectively.) Similarly for the states B and B'. 
The pressure difference PB - PA (or, equivalently, PB' - PA,) is assumed 
to be infinitesimal ( = dP), and similarly for the temperature difference 
TB - TA ( = dT). The slope of the curve is dP /dT. 

t 
p 

FIGURE97 
r- Four coexistence states. 
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Phase equilibrium requires that 

(9.4) 

and 

(9.5) 

whence 

(9.6) 

But 

/J, B - /J, A = - s dT + V dP (9.7) 

and 

/J-8 , - /J-A' = - s' dT + v' dP (9.8) 

in which s and s' are the molar entropies and v and v' are the molar 
volumes in each of the phases. By inserting equations 9.7 and 9.8 in 
equation 9.6 and rearranging the terms, we easily find 

dP s' - s 
(9.9) -=--

dT ti' - V 

dP As (9.10) -=-
dT Av 

in which As and Av are the discontinuities in molar entropy and molar 
volume associated with the phase transition. According to equation 9.2 the 
latent heat is 

t'= TAs (9.11) 

whence 

dP t (9.12) dT TAv 

This is the Clapeyron equation. 
The Clapeyron equation embodies the Le Chatelier principle. Consider 

a solid-liquid transition with a positive latent heat (st> sJ and a positive 
difference of molar volumes ( vt > vJ. The slope of the phase curve is 
correspondingly positive. Then an increase in pressure at constant temper-
ature tends to drive the system to the more dense (solid) phase (alleviating 
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the pressure increase), and an increase in temperature tends to drive the 
system to the more entropic (liquid) phase. Conversely, if st> s5 but 
v1 < V5 , then the slope of the coexistence curve is negative, and an increase 
of the pressure (at constant T) tends to drive the system to the liquid 
phase-again the more dense phase. 

In practical problems in which the Clapeyron equation is applied it is 
often sufficient to neglect the molar volume of the liquid phase relative to 
the molar volume of the gaseous phase ( vg - v1 =-vg), and to approximate 
the molar volume of the gas by the ideal gas equation (vg :::,e RT /P). This 
"Clapeyron-Clausius approximation" may be used where appropriate in 
the problems at the end of this section. 

Example 
A light rigid metallic bar of rectangular cross sectmn lies on a block of ice, extend-
ing slightly over each end. The width of the bar is 2 mm and the length of the bar in 
contact with the ice is 25 cm. Two equal masses, each of mass M, are hung from the 
extending ends of the bar. The entire system is at atmosphenc pressure and is 
maintained at a temperature of T = - 2°C. What is the minimum value of M for 
which the bar will pass through the block of ice by "regelation "? The given data are 
that the latent heat of fusion of water is 80 cal/gram, that the density ofliquid water 
is 1 gram/cm3, and that ice cubes float with =4/5 of their volume submerged. 

Solution 
The Clapeyron equation permits us to find the pressure at which the solid-liquid 
transition occurs at T = - 2°C. However we must first use the "ice cube data" to 
obtain the difference Av m molar volumes of liquid and solid phases The data 
given imply that the density of ice is 0.8g/cm 3• Furthermore v11q = 18 cm3/mole, and 
therefore Vsohd =22.5 x 10- 0 m3/mole. Thus 

dP) = = (80 X 4.2 X 18) J/mole -5 X 100 Pa/K 
dT cc TAv 271 x ( -4.5 x 10- 0) K-m 3/mole 

so that the pressure difference required is 

P "" -5 X 106 X ( -2) = 107 Pa 

This pressure is to be obtained by a weight 2Mg acting on the area A = 5 x 10- 5 m2 , 

M =!AP~ 
g 

= ! (107 Pa) (5 x 10 · 5 m1) / (9.8 ;z)= 2.6 Kg 
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PROBLEMS 

9.3-1. A particular liquid boils at 127°C at a pressure of 800 mm Hg. It has a 
heat of vaporization of 1000 caljmole. At what temperature will it boil if the 
pressure is raised to 810 mm Hg? 
9.3-2. A long vertical column is closed at the bottom and open at the top; it is 
partially filled with a particular liquid and cooled to - 5 °C. At this temperature 
the fluid solidifies below a particular level, remaining liquid above this level. If the 
temperature is further lowered to -5.2°C the solid-liquid interface moves 
upward by 40 cm. The latent heat (per unit mass) is 2 caljg, and the density of 
the liquid phase is 1 g/cm 3• Find the density of the solid phase. Neglect thermal 
expansion of all materials. 
Hint: Note that the pressure at the original position of the interface remains 
constant. 

Answer: 
2.6 g/cm 3 

9.3-3. It is found that a certain liquid boils at a temperature of 95°C at the top of 
a hill, whereas it boils at a temperature of 105°C at the bottom. The latent heat is 
1000 caljmole. What is the approximate height of the hill? 
9.3-4. Two weights are hung on the ends of a wire, which passes over a block of 
ice. The wire gradually passes through the block of ice, but the block remains 
intact even after the wire has passed completely through it. Explain why less mass 
is required if a semi-flexible wire is used, rather than a rigid bar as in the Example. 
9.3-5. In the vicinity of the triple point the vapor pressure of liquid ammonia (in 
Pascals) is represented by 

In P = 24.38 - 3o:3 

This is the equation of the liquid-vapor boundary curve in a P-T diagram. 
Similarly, the vapor pressure of solid ammonia is 

3754 
In P = 27.92 - -;y-

What are the temperature and pressure at the triple point? What are the latent 
heats of sublimation and vaporization? What is the latent heat of fusion at the 
triple point? 
9.3-6. Let x be the mole fraction of solid phase in a solid-liquid two-phase 
system. If the temperature is changed at constant total volume, find the rate of 
change of x; that is, find dx/dT. Assume that the standard parameters u, 
a, Kr, cp are known for each phase. 
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9.3-7. A particular material has a latent heat of vaporization of 5 X 103 J/mole, 
constant along the coexistence curve. One mole of this material exists in two-phase 
(liquid-vapor) equilibrium in a container of volume V = 10- 2 m3, at a tempera-
ture of 300 Kand a pressure of 105 Pa. The system is heated at constant volume, 
increasing the pressure to 2.0 X 105 Pa. (Note that this is not a small fj.P.) The 
vapor phase can be treated as a monatomic ideal gas, and the molar volume of the 
liquid can be neglected relative to that of the gas. Find the initial and final mole 
fractions of the vapor phase [x = Ng/(Ng + N,.)]. 
9.3-8. Draw the phase diagram, in the Be-T plane, for a simple ferromagnet; 
assume no magnetocrystalline anisotropy and assume the external field Be to be 
always parallel to a fixed axis in space. What is the slope of the coexistence curve? 
Explain this slope in terms of the Clapeyron equation. 
9.3-9. A system has coexistence curves similar to those shown in Fig. 9.6a, but 
with the liquid-solid coexistence curve having a positive slope. Sketch the 
isotherms in the P-u plane for temperature T such that 
(a) T < T,, (b) T = T,, (c) T, ::S T < I::01 , (d) T, < T ::S I::nt> (e) T = 
I::nt• (f) T I::nt· 
Here T, and I::nt denote the triple point and critical temperatures, respectively. 

9-4 UNSTABLE ISOTHERMS AND 
FIRST-ORDER PHASE TRANSITIONS 

Our discussion of the origin of first-order phase transitions has focused, 
quite properly, on the multiple minima of the Gibbs potential. But 
although the Gibbs potential may be the fundamental entity at play, a 
more common description of a thermodynamic system is in terms of the 
form of its isotherms. For many gases the shape of the isotherms is well 
represented (at least semiquantitatively) by the van der Waals equation of 
state (recall Section 3.5) 

p = RT 
(v - b) 

a 
v2 (9.13) 

The shape of such van der Waals isotherms is shown schematically in 
the P-v diagram of Fig. 9.8. 

As pointed out in Section 3.5 the van der Waals equation of state can 
be viewed as an "underlying equation of state," obtained by curve fitting, 
by inference based on plausible heuristic reasoning, or by statistical 
mechanical calculations based on a simple molecular model. Other em-
pirical or semiempirical equations of state exist, and they all have iso-
therms that are similar to those shown in Fig. 9.8. 

We now explore the manner in which isotherms of the general form 
shown reveal and define a phase transition. 
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FIGURE 98 
van der Waals isotherms (schematic). T1 < T2 < T; ... 

It should be noted immediately that the isotherms of Fig. 9.8 do not 
satisfy the criteria of intrinsic stability everywhere, for one of these criteria 
(equation 8.21) is "r > 0, or 

(9.14) 

This condition clearly is violated over the portion FKM of a typical 
isotherm (which, for clanty, is shown separately in Fig. 9.9). Because of 
this violation of the stability condition a portion of the isotherm must be 
unphysical, superseded by a phase transition in a manner which will be 
explored shortly. 

The molar Gibbs potential is essentially determined by the form of the 
isotherm. From the Gibbs-Duhem relation we recall that 

dµ = -sdT + vdP (9.15) 

whence, integrating at constant temperature 

µ = f vdP + <t,(T) (9.16) 

where <f,( T) is an undetermined function of the temperature, arising as the 
"constant of integration." The integrand v(P), for constant temperature, 
is given by Fig. 9.9, which is most conveniently represented with P as 
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FIGURE99 
A particular isotherm of the van der Waals shape. 

abscissa and v as ordinate. By arbitrarily assigning a value to the chemical 
potential at the point A, we can now compute the value ofµ at any other 
point on the same isotherm, such as B, for from equation 9.16 

(9.17) 

In this way we obtain Fig. 9.10. This figure, representingµ versus P, can 
be considered as a plane section of a three-dimensional representation of 
µ. versus P and T, as shown in Fig. 9.11. Four different constant-tempera-
ture sections of the µ-surface, corresponding to four isotherms, are shown. 
It is also noted that the closed loop of the µ versus P curves, which results 
from the fact that v( P) is triple valued in P (see Fig. 9.9), disappears for 
high temperatures in accordance with Fig. 9.8. 

Finally, we note that the relation µ = µ(T, P) constitutes a fundamen-
tal relation for one mole of the material, as the chemical potential µ is the 
Gibbs function per mole. It would then appear from Fig. 9.11 that we 
have almost succeeded in the construction of a fundamental equation 
from a single given equation of state, but it should be recalled that 
although each of the traces of the µ-surface (in the various constant 
temperature planes of Fig. 9.11) has the proper form, each contains an 
additive "constant" q,(T), which varies from one temperature plane to 
another. Consequently, we do not know the complete form of the 
µ.( T, P)-surface, although we certainly are able to form a rather good 
mental picture of its essential topological properties. 

With this qualitative picture of the fundamental relation implied by the 
van der Waals equation, we return to the question of stability. 
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Consider a system in the state A of Fig. 9.9 and in contact with thermal 
and pressure reservoirs. Suppose the pressure of the reservoir to be 
increased quasi-statically, maintaining the temperature constant. The sys-
tem proceeds along the isotherm in Fig. 9.9 from the point A in the 
direction of point B. For pressures less than PB we see that the volume of 
the system (for given pressure and temperature) is single valued and 
unique. As the pressure increases above PB, however, three states of equal 
p and T become available to the system, as, for example, the states 
designated by C, L, and N. Of these three states L is unstable, but at 
both C and N the Gibbs potential is a (local) minimum. These two local 
minimum values of the Gibbs potential (or of µ) are indicated by the 
points C and N in Fig. 9.10. Whether the system actually selects the state 
C or the state N depends upon which of these two local minima of the 
Gibbs potential is the lower, or absolute, minimum. It is clear from Fig. 
9.10 that the state C is the true physical state for this value of the pressure 
and temperature. 

As the pressure is further slowly increased, the unique point D is 
reached. At this point the µ-surface intersects itself, as shown in Fig. 9.10, 
and the absolute minimum of µ or G thereafter comes from the other 
branch of the curve. Thus at the pressure PE = PQ, which is greater than 
P0 , the physical state is Q. Below P0 the right-hand branch of the 
isotherm in Fig. 9.9a is the physically significant branch, whereas above 
PO the left-hand branch is physically significant. The physical isotherm 
thus deduced from the hypothetical isotherm of Fig. 9. 9 is therefore shown in 
Fig. 9.12. 

The isotherm of Fig. 9. 9 belongs to an "underlying fundamental 
relation"; that of Fig. 9.12 belongs to the stable "thermodynamic funda-
mental relation." 

p 

v--
FIGURE 912 
'fhe physical van der Waals isotherm. The "underlying" isotherm is SOMKFDA, but the 
equal-area construction converts it to the physical isotherm SOKDA. 
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The points D and O are determined by the condition that µ, 0 = µ 0 or, 
from equation 9.17 

f 0 u(P)dP = 0 
D 

(9.18) 

where the integral is taken along the hypothetical isotherm. Referring to 
Fig. 9.9, we see that this condition can be given a direct graphical 
interpretation by breaking the integral into several portions 

J,FudP + J.\dP + fMudP + f 0 udP = 0 
D F }K M 

(9.19) 

and rearranging as follows 

(9.20) 

Now the integral f/;udP is the area under the arc DF in Fig. 9.12 and the 
integral J[vdP is the area under the arc KF. The difference in these 
integrals is the area in the closed region DFKD, or the area marked I in 
Fig. 9.12. Similarly, the right-hand side of equation 9.20 represents the 
area II in Fig. 9.12, and the unique points O and D are therefore 
determined by the graphical condition 

area I = area II (9.21) 

It is only after the nominal ( non-monotonic) isotherm has been truncated by 
this equal area constructwn that it represents a true physical isotherm. 

Not only is there a nonzero change in the molar volume at the phase 
transition, but there are associated nonzero changes in the molar energy 
and the molar entropy as well. The change in the entropy can be 
computed by integrating the quantity 

(9.22) 

along the hypothetical isotherm OMKFD. Alternatively, by the thermody-
namic mnemonic diagram, we can write 

lis=s 0 -s 0 = f (!~) du 
OMKFD 1' 

(9.23) 

A geometrical interpretation of this entropy difference, in terms of the 
area between neighboring isotherms, is shown in Fig. 9.13. 
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FIGURE913 
The discontinuity in molar entropy. The area between adJacent isotherms is related to the 
entropy discontinuity and thence to the latent heat. 

As the system is transformed at fixed temperature and pressure from 
the pure phase O to the pure phase D, it absorbs an amount of heat per 
mole equal to I 00 = T!::.s. The volume change per mole is !::.u = u0 - u0 , 

and this is associated with a transfer of work equal to P!::.u. Consequently, 
the total change in the molar energy is 

!::.u = u0 - u0 = T!::.s - P!::.u (9.24) 

Each isotherm, such as that of Fig. 9.12, has now been classified into 
three regions. The region SO is in the liquid phase. The region DA is in 
the gaseous phase. The flat region OKD corresponds to a mixture of the 
two phases. Thereby the entire P-u plane is classified as to phase, as 
shown in Fig. 9.14. The mixed liquid-plus-gas region is bounded by the 
inverted parabola-like curve joining the extremities of the flat regions of 
each isotherm. 

Within the two-phase region any given point denotes a mixture of the 
, two phases at the extremities of the flat portion of the isotherm passing 
· through that point. The fraction of the system that exists in each of the 
two phases is governed by the "lever rule." Let us suppose that the molar 
volumes at the two extremities of the flat region of the isotherm are u1 and 
V8 (suggesting but not requiring that the two phases are liquid and gas, for 
definiteness). Let the molar volume of the mixed system be u =· V /N. 
Then if x 1 and x 8 are the mole fractions of the two phases 

V =Nu= Nx 1 u1 + Nx 8v8 

from which one easily finds 

(9.25) 

(9.26) 
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FIGURE914 
Phase classification of the P - v plane. 

and 

V - Vt 
X = 

g V - V g t 
(9.27) 

That is, an intermediate point on the flat portion of the isotherm implies a 
mole fraction of each phase that is equal to the fractional distance of the 
point from the opposite end of the flat region. Thus the point Z in Fig 
9.14 denotes a mixed liquid-gas system with a mole fraction of liquid 
phase equal to the "length" ZD divided by the "length" OD. This is the 
very convenient and pictorial lever rule. 

The vertex of the two-phase region, or the point at which 0" and D" 
coincide in Fig. 9.14, corresponds to the critical point-the termination of 
the gas-liquid coexistence curve in Fig. 9.la. For temperatures above the 
critical temperature the isotherms are monotonic (Fig. 9.14) and the molar 
Gibbs potential no longer is reentrant (Fig. 9.10). 

Just as a P-v diagram exhibits a two-phase region, associated with the 
discontinuity in the molar volume, so a T-s diagram exhibits a two-phase 
region associated with the discontinuity in the molar entropy. 

Example 1 
Find the critical temperature Tc, and critical pressure Pa for a system described 
by the van der Waals equation of state. Write the van der Waals equation of state 
in terms of the reduced variabks t = T /Tm P = P / Per and ii = v /v". 
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Solution 
The critical state coincides with a point of horizontal inflection of the isotherm, or 

( aP) = ( a2p) = 0 av T,, av2 T,, . 

(Why?) Solving these two simultaneous equations gives 

V = 3b " 
p =-a-

cr 27b 2 ' 

8a 
RT,,,= 27b 

from which we can write the van der Waals equation in reduced variables: 

- st 3 P=----
3v - 1 v2 

Example 2 
Calculate the functional form of the boundary of the two-phase region in the P-T 
plane for a system described by the van der Waals equation of state. 

Solution 
We work in reduced variables, as defined in the preceding example. We consider a 
fixed temperature and we carry out a Gibbs equal area construction on the 
corresponding isotherm. Let the extremities of the two-phase region, correspond-
ing to the reduced temperature t, be v8 and vt. The equal area construction 
corresponding to equations 9.20 and 9.21 is 

[ 8Pdv = PAvg - Ve) 
"r 

"'.here Pt= P8 is the reduced pressure at which the phase transition occurs (at the 
given reduced temperature T). The reader should draw the isotherm, identify 
the significance of each side of the preceding equation, and reconcile this form of 
the statement with that in equations 9.20 and 9.21; he or she should also Justify 
the use of reduced variables in the equation. Direct evaluation of the integral 

_gives 
_ 91 1 91 1 

ln(3v 8 - 1) + -- -:--- J- l = ln(3vt- 1) + -- -::-- r l 4T v8 v8 - 4T Ve v1 -

Simultaneous solution of this equation and of the van der Waals equations for 
Bg(i'>, T) and vr(P, T) gives v8 , vt and P for each value of t. 

PROBLEMS 

9.4-1. Show that the difference in molar volumes across a coexistence curve is 
given by 6.v = _ p · 11).j. 

9.4-2. Derive the expressions for v,, Pc and T, given in Example 1. 
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9.4-3. Using the van der Waals constants for H 20, as given in Table 3.1, calculate 
the critical temperature and pressure of water. How does this compare with the 
observed value Tc= 647.05 K (Table IO.I)? 
9.4-4. Show that for sufficiently low temperature the van der Waals isotherm 
intersects the P = 0 axis, predicting a region of negative pressure. Find the 
temperature below which the isotherm exhibits this unphysical behavior. 
Hint: Let P = 0 in the reduced van der Waals equation and consider the 
condition that the resultant quadratic equation for the variable v-1 have two real 
roots. 

Answer: 
f = H = o.84 

9.4-5. Is the fundamental equation of an ideal van der Waals fluid, as given in 
Section 3.5, an "underlying fundamental relation" or a "thermodynamic funda-
mental relation?" Why? 
9.4-6. Explicitly derive the relationship among v8 , v1 and f, as given in 
Example 2. 
9.4-7. A particular substance satisfies the van der Waals equation of state. The 
coexistence curve is plotted in the P, t plane, so that the critical point is at (I, I). 
Calculate the reduced pressure of the transition for t = 0.95. Calculate the 
reduced molar volumes for the corresponding gas and liquid phases. 
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FIGURE915 
The T = 0.95 isotherm. 

The t = 0.95 isotherm is shown in Fig. 9.15. 
Counting squares permits the equal area construction 

Answer: 
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shown, giving the approximate roots indicated on 
the figure. Refinement of these roots by the 
analytic method of Example 2 yields J> = 0.814, 
vg = 1.71 and v1 = 0.683 

9.4-8. Using the two points at T = 0.95 and T = 1 on the coexistence curve of a 
fluid obeying the van der Waals equation of state (Problem 9.4-7), calculate the 
average latent heat of vaporization over this range. Specifically apply this result to 
H 20. 
9.4-9. Plot the van der Waals isotherm, in reduced variables, for T = 0.9Tc. Make 
an equal area construction by counting squares on the graph paper. Corroborate 
and refine this estimate by the method of Example 2. 
9.4-10. Repeat problem 9.4-8 in the range 0.90 :$ T :$ 0.95, using the results of 
problems 9.4-7 and 9.4-9. Does the latent heat vary as the temperature ap-
proaches 'I',;? What is the expected value of the latent heat precisely at Tc? The 
latent heat of vaporization of water at atmospheric pressure is "" 540 calories per 
gram. Is this value qualitatively consistent with the trend suggested by your 
results? 
9.4-11. Two moles of a van der Waals fluid are maintained at a temperature 
T == 0.95Tc in a volume of 200 cm3 • Find the mole number and volume of each 
phase. Use the van der Waals constants of oxygen. 

9-5 GENERAL A TIRIBUTES OF 
FIRST-ORDER PHASE TRANSITIONS 

Our discussion of first-order transitions has been based on the general 
shape of realistic isotherms, of which the van der Waals isotherm is a 
characteristic representative. The problem can be viewed in a more general 
perspective based on the convexity or concavity of thermodynamic poten-
tials. 

Consider a general thermodynamic potential, U[P 5 , ••• , P,], that is a 
function of S, X 1, X2 , ••• , X5 _ 1, P5 , ••• , Pr The criterion of stability is that 
U[P,, ... , P,] must be a convex function of its extensive parameters and a 
concave function of its intensive parameters. Geometrically, the function 
must lie above its tangent hyperplanes in the X1, ••• , X5 _ 1 subspace and 
below its tangent hyperplanes in the Ps, . .. , P, subspace. 

Consider the function U[P 5 , ••• , P,] as a function of X,, and suppose it 
to have the form shown in Fig. 9.16a. A tangent line DO is also shown. It 
will be noted that the function lies above this tangent line. It also lies 
above all tangent lines drawn at points to the left of D or to the right of 
0. The function does not lie above tangent lines drawn to points inter-
mediate between D and o_ The local curvature of the potential is positive 
for all points except those between points F and M. Nevertheless a phase 
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Stability reconstruction for a general potential. 
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transition occurs from the phase at D to the phase at 0. Global curvature 
fails (becomes negative) at D before local curvature fails at F. 

The "amended" thermodynamic potential U[Ps, ... , P,] consists of the 
segment AD in Fig. 9.15a, the straight line two-phase segment DO, and 
the original segment OR. 

An intermediate point on the straight line segment, such as Z, corre-
sponds to a mixture of phases D and 0. The mole fraction of phase D 
varies linearly from unity to zero as Z moves from point D to point O. 
from which it immediately follows that 

This is again the "lever rule." 
The value of the thermodynamic potential U[Ps, ... , P,] in the mixed 

state (i.e., at Z) clearly is less than that in the pure state (on the initial 
curve corresponding to X/). Thus the mixed state given by the straight 
line construction does mimmize U[Ps, ... , P,] and does correspond to the 
physical equilibrium state of the system. 

The dependence of U[P5 , ••• , P,] on an intensive parameter Ps is 
subject to similar considerations, which should now appear familiar. The 
Gibbs potential U[T, P] = Nµ(T, P) is the particular example studied in 
the preceding section. The local curvature is negative except for the 
segment MF (Fig. 9.16b ). But the segment MD lies above, rather than 
below, the tangent drawn to the segment ADP at D. Only the curve 
ADOR lies everywhere below the tangent lines, thereby satisfying the 
conditions of global stability. 

Thus the particular results of the preceding section are of very general 
applicability to all thermodynamic potentials. 


