
3 
SOME FORMAL RELATIONSHIPS, 

AND SAMPLE SYSTEMS 

3-1 THE EULER EQUATION 

Having seen how the fundamental postulates lead to a solution of the 
equilihnum problem, we now pause to examine in somewhat greater detail 
the mathematical properties of fundamental equations. 

The homogeneous first-order property of the fundamental relation 
permits that equation to be written in a particularly convenient form, 
called the Euler form. 

From the definition of the homogeneous first-order property we have, 
for any A 

U()I.S, AX1 , ••• , AX,)= )I.U(S, Xi, ... , X,) (3.1) 

Differentiating with respect to A 

au( ... ,AX", ... ) a(AS) au( ... ,AX", ... ) a()I.X,) 
a(AS) a)I. + a(AXJ a)I. 

+ · · · = U(S, Xi,- .. , X,) (3.2) 

or 

au( ... ,AXk,···) au( ... ,AXk, ... ) X 
a(AS) S + 1"::1 a(AX,) J 

= U(S, X., ... , X,) (3.3) 

This equation is true for any X and in particular for X = 1, in which case 



60 Some Formal Relatwnships and Sample Systems 

it takes the form 

u (3.4) 

(3.5) 

For a simple system in particular we have 

(3.6) 

The relation 3.5 or 3.6 is the particularization to thermodynamics of the 
Euler theorem on homogeneous first-order forms. The foregoing develop-
ment merely reproduces the standard mathematical derivation. We refer 
to equation 3.5 or 3.6 as the Euler relation. 

In the entropy representation the Euler relation takes the form 

(3.7) 

or 

(3.8) 

PROBLEMS 

3.1-1. Write each of the five physically acceptable fundamental equations of 
Problem 1. I 0-1 in the Euler form. 

3-2 THE GIBBS-DUHEM RELATION 

In Chapter 2 we arrived at equilibrium criteria involving the tempera-
ture, pressure, and chemical potentials. Each of the intensive parameters 
entered the theory in a similar way, and the formalism is, in fact, 
symmetric in the several intensive parameters. Despite this symmetry, 
however, the reader is apt to feel an intuitive response to tlte concepts of 
temperature and pressure, which is lacking, at least to some degree, in the 
case of the chemical potential. It is of interest, then, to note that the 
intensive parameters are not all independent. There is a relation among 
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the intensive parameters, and for a single-component system µ is a 
function of T and P. 

The existence of a relationship among the various intensive parameters 
is a consequence of the homogeneous first-order property of the funda-
mental relation. For a single-component system this property permits the 
fundamental relation to be written in the form u = u(s, v), as in equation 
2.19; each of the three intensive parameters is then also a function of s 
and v. Elimination of s and v from among the three equations of state 
yields a relation among T, P, and µ. 

The argument can easily be extended to the more general case, and it 
again consists of a straightforward counting of variables. Suppose we have 
a fundamental equation in (t + 1) extensive variables 

(3.9) 

yielding, in turn, t + 1 equations of state 

(3.10) 

If we choose the parameter A of equation 2.14 as A= 1/X,, we then have 

(3.11) 

Thus each of the ( t + 1) intensive parameters is a function of just t 
variables. Elimination of these t variables among the ( t + 1) equations 
yields the desired relation among the intensive parameters. 

To find the explicit functional relationship that exists among the set of 
intensive parameters would require knowledge of the explicit fundamental 
equation of the system. That is, the analytic form of the relationship varies 
from system to system. Given the fundamental relation, the procedure is 
evident and follows the sequence of steps indicated by equations 3.9 
through 3.11. 

A differential form of the relation among the intensive parameters can 
be obtained directly from the Euler relation and is known as the 
Gibbs~ Duhem relation. Taking the infinitesimal variation of equation 3.5, 
we find 

I I 

du = T dS + s dT + L pl dXJ + L X} dPJ (3.12) 
1=l _1=l 

But, in accordance with equation 2.6, we certainly know that 

I 

dU = T dS + L dXJ (3.13) 
1=l 
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whence, by subtraction we find the Gibbs- Duhem relation 

t 

s dT + [ x1 d~ = o (3.14) 
1=I 

For a single-component simple system, in particular, we have 

S dT - V dP + Ndµ = 0 (3.15) 

or 

dµ = -sdT + vdP (3.16) 

The variation in chemical potential is not independent of the variations in 
temperature and pressure, but the variation of any one can be computed 
in terms of the variations of the other two. 

The Gibbs-Duhem relation presents the relationship among the inten-
sive parameters in d1ff erential form. Integration of this equation yields the 
relation in explicit form, and this is a procedure alternative to that 
presented in equations 3.9 through 3.11. In order to integrate the 
Gibbs--Duhem relation, one must know the equations of state that enable 
one to write the X1 's in terms of the P1 's, or vice versa. 

The number of intensive parameters capable of independent variation is 
called the number of thermodynamic degrees of freedom of a given system. 
A simple system of r components has r + I thermodynamic degrees of 
freedom. 

In the entropy representation the Gibbs-Duhem relation again states 
that the sum of products of the extensive parameters and the differentials 
of the corresponding intensive parameters vanishes. 

(3.17) 

or 

(3.18) 

PROBLEMS 

3.2-1. Find the relation among T, P, and µ. for the system with the fundamental 
equation 

U= (v58)~ 
R 3 NV 2 
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3-3 SUMMARY OF FORMAL STRUCTURE 

Let us now summarize the structure of the thermodynamic formalism in 
the energy representation. For the sake of clarity, and in order to be 
explicit, we consider a single-component simple system. The fundamental 
equation 

U = U(S, V, N) (3.19) 

contains all thermodynamic information about a system. With the defini,.. 
tions T = au I as, and so forth, the fundamental equation implies three 
equations of state 

T = T( S, V, N) = T( s, v) 

P= P(S,V,N) = P(s,v) 

µ = µ(S, V, N) = µ(s,v) 

(3.20) 

(3.21) 

(3.22) 

If all three equations of state are known, they may be substituted into the 
Euler relation, thereby recovering the fundamental· equation. Thus the 
totality of all three equations of state is equivalent to the fundamental 
equation and contains all thermodynamic information about a system. 
Any single equation of state contains less thermodynamic information 
than the fundamental equation. 

If two equations of state are known, the Gibbs- Duhem relation can be 
integrated to obtain the third. The equation of state so obtained will 
contain an undetermined integration constant. Thus two equations of 
state are sufficient to determine the fundamental equation, except for an 
undetermined constant. 

A logically equivalent but more direct and generally more convenient 
method of obtaining the fundamental equation when two equations of 
state are given is by direct integration of the molar relation 

du= Tds - Pdv (3.23) 

Clearly, knowledge of T = T(s, v) and P = P(s, v) yields a differential 
equation in the three variables u, s, and v, and integration gives 

u = u(s,v) (3.24) 

which is a fundamental equation. Again, of course, we have an unde-
termined constant of integration. 

It is always possible to express the internal energy as a function of 
parameters other than S, V, and N. Thus we could eliminate S from 
U = U(S, V, N) and T = T(S, V, N) to obtain an equation of the form 
U = U( T, V, N ). However, I stress that such an equation is not a funda-
mental relation and does not contain all possible thermodynamic informa-
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tion about the system. In fact, recalling the definition of T as au/ as, we 
see that U = U(T, V, N) actually is a partial differential equation. Even if 
this equation were integrable, it would yield a fundamental equation with 
undetermined functions. Thus knowledge of the relation U = U(S, V, N) 
allows one to compute the relation U = U( T, V, N ), but knowledge of 
U = U(T, V, N) does not permit one inversely to compute U = 
U(S, V, N). Associated with every equation there is both a truth value and 
an informational content. Each of the equations U = U(S, V, N) and 
U = U( T, V, N) may be true, but only the former has the optimum 
informational content. 

These statements are graphically evident if we focus, for instance, on 
the dependence of U on Sat constant V and N. Let that dependence be 
as shown in the solid curve in Fig. 3.l(a). This curve uniquely determines 
the dependence of U on T, shown in Fig. 3.l(b); for each point on the 
U( S) curve there is a definite u and a definite slope T = au I as, 
determining a point on the U( T) curve. Suppose, however, that we are 
given the U(T) curve (an equation of state) and we seek to recover the 
fundamental U(S) curve. Each of the dotted curves in Fig. 3.l(a) is 
equally compatible with the given U( T) curve, for all have the same slope 
T at a given U. The curves differ by an arbitrary displacement, corre-
sponding to the arbitrary "constant of integration" in the solution of the 
differential equation U = U(aU/aS). Thus, Fig. 3.l(a) implies Fig. 3.l(b), 
but the reverse is not true. Equivalently stated, only U = U(S) is a 
fundamental relation. The formal structure is illustrated by consideration 
of several specific and explicit systems in the following Sections of this 
book. 

Example 
A particular system obeys the equations 

U= tPV 



and 

AU3;2 
T2=--

VN112 

where A is a positive constant. Find the fundamental equation. 

Solution 

Problem!> ().) 

Writing the two equations in the form of equations of state in the entropy 
representation (which is suggested by the appearance of U, V, and N as 
independent parameters) 

I _ = A-112u-3f4vlf2 
T 

P = ZA - lf2ulf4v -1;2 
T 

Then the differential form of the molar fundamental equation (the analogue of 
equation 3.23) is 

so that 

and 

I p 
ds=-du+-dv T T 

= A - 1;2( u- 3f4vlf2 du + 2ulf4v- 1;2 dv) 

= 4A - 112d ( ulf4vlf2) 

s = 4A - lf2ulf4vlf2 + so 

S = 4A -112u114v112Ntf4 + Nso 

The reader should compare this method with the alternative technique of first 
integrating the Gibbs-Duhem relation to obtain µ,(u, v), and then inserting the 
three equations of state into the Euler equation. 

Particular note should be taken of the manner in which ds is integrated to 
obtain s. The equation for ds in terms of du and dv is a partial differential 
equation-it certainly cannot be integrated term by term, nor by any of the 
familiar methods for ordinary differential equations in one independent variable. 
We have integrated the equation by "inspection"; simply "recognizing" that 
u- 314vi12 du + 2u 1i 4v- 112 dv is the differential of u1i 4v1i 2• 

PROBLEMS 

3.3-1. A particular system obeys the two equations of state 

3As 2 
T = -- , the thermal equation of state 

V 
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and 
As 3 

P=-
2 ' V 

where A is constant. 

the mechanical equation of state 

a) Find µ as a function of s and v, and then find the fundamental equation. 
b) Find the fundamental equation of this system by direct integration of the 
molar form of the equation. 
3.3-2. It is found that a particular system obeys the relations 

U=PV 
and 

P= BT 2 

where B is constant. Find the fundamental equation of this system. 
3.3-3. A system obeys the equations 

NU 
p = - NV- 2AVU 

and 
U 112v112 

T= 2C AU/N 
N- 2AUe 

Find the fundamental equation. 
Hint: To integrate, let 

where D, n, and mare constants to be determined. 
3.3-4. A system obeys the two equations u = iPv and u1/ 2 = BTv 113. Find the 
fundamental equation of this system. 

3-4 THE SIMPLE IDEAL GAS AND 
MULTI COMPONENT SIMPLE IDEAL GASES 

A "simple ideal gas" is characterized by the two equations 

PV= NRT (3.25) 

and 

U= cNRT (3.26) 

where c is a constant and R is the "universal gas constant" ( R = NAk 8 = 
8.3144 J/mole K). 

Gases composed of noninteracting monatornic atoms (such as He, Ar, 
Ne) are observed to satisfy equations 3.25 and 3.26 at temperatures such 
that k 8 T is small compared to electronic excitation energies (i.e., T $ 10 4 

K), and at low or moderate pressures. All such "monatomic ideal gases" 
have a value of c = 1· 
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Under somewhat more restrictive conditions of temperature and pres-
sure other real gases may conform to the simple ideal gas equations 3.25 
and 3.26, but with other values of the constant c. For diatomic molecules 
(such as 0 2 or NO) there tends to be a considerable region of temperature 
for which c =:c and another region of higher temperature for which c =:c 1 
(with the boundary between these regions generally occurring at tempera-
tures on the order of 103 K). 

Equations 3.25 and 3.26 permit us to determine the fundamental 
equation. The explicit appearance of the energy U in one equation of state 
( equation 3.26) suggests the entropy representation. Rewriting the equa-
tions in the correspondingly appropriate form 

(3.27) 

and 

(3.28) 

From these two entropic equations of state we find the third equation of 
state 

1;, = function of u, v (3.29) 

by integration of the Gibbs-Duhem relation 

(3.30) 

Finally, the three equations of state will be substituted into the Euler 
equation 

S= (~)u+(~)v-(1;,)N {3.31) 

Proceeding in this way the Gibbs-Duhem relation (3.30) becomes 

d ( 1;,) = u X ( - ) du + v X ( - : ) dv = - cR d: - R d: 

(3.32) 

and integrating 

- - - = -cRln- - Rln-µ (µ) U V 
T T o u0 v0 

(3.33) 

Here u0 and v0 are the parameters of a fixed reference state, and (µ/T) 0 
arises as an undetermined constant of integration. Then, from the Euler 
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relation (3.31) 

[( U )c( V )( N )-(c+l)l 
S = Nso + NR]n Uo Vo No (3.34) 

where 

So= ( C + {)R -( t (3.35) 

Equation 3.34 is the desired fundamental equation; if the integration 
constant s0 were known equation 3.34 would contain all possible thermo-
dynamic information about a simple ideal gas. 

This procedure is neither the sole method, nor even the preferred 
method. Alternatively, and more directly, we could integrate the molar 
equation 

(3.36) 

which, in the present case, becomes 

ds = c ( : ) du + ( ) dv (3.37) 

giving, on integration, 

s = s0 + cR In ( :J + R In ( :J (3.38) 

This equation is equivalent to equation 3.34. 
It should, perhaps, be noted that equation 3.37 is integrable term by 

term, despite our injunction (in Example 3) that such an approach 
generally is not possible. The segregation of the independent variables u 
and v in separate terms in equation 3.37 is a fortunate but unusual 
simplification which permits term by term integration in this special case. 

A mixture of two or more simple ideal gases-a "multicomponent 
simple ideal gas" -is characterized by a fundamental equation which is 
most simply written in parametric form, with the temperature T playing 
the role of the parametric variable. 

(3.39) 
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Elimination of T between these equations gives a single equation of the 
standard form S = S( U, V, N1, Ni, ... ). 

Comparison of the individual terms of equations 3.39 with the expres-
sion for the entropy of a single-component ideal gas leads to the following 
interpretation ( often referred to as Gibbs's Theorem). The entropy of a 
mixture of ideal gases is the sum of the entropies that each gas would have if 
it alone were to occupy the volume V at temperature T. The theorem is, in 
fact, true for all ideal gases (Chapter 13). 

It is also of interest to note that the first of equations 3.39 can be 
written in the form 

(3.40) 

and the last term is known as the "entropy of mixing." It represents the 
difference in entropies between that of a mixture of gases and that of a 
collection of separate gases each at the same temperature and the same 
density as the original mixture ~/ = N / V, ( and hence at the same 
pressure as the original mixture); see Problem 3.4-15. The close similarity, 
and the important distinction, between Gibbs's theorem and the interpre-
tation of the entropy of mixing of ideal gases should be noted carefully by 
the reader. An application of the entropy of mixing to the problem of 
isotope separation will be given in Section 4.4 (Example 4). 

Gibbs's theorem is demonstrated very neatly by a simple "thought 
experiment." A cylinder (Fig. 3.2) of total volume 2V0 is divided into four 
chambers ( designated as a, /3, y, ~) by a fixed wall in the center and by 
two sliding walls. The two sliding walls are coupled together so that their 
distance apart is always one half the length of the cylinder ( V0 = VY and 
Vp = Vii). Initially, the two sliding walls are coincident with the left end 
and the central fixed partition, respectively, so that Va = Vv = 0. The 
chamber /3, of volume V0 , is filled with a mixture of N0 moles of a simple 
ideal gas A and N0 moles of a simple ideal gas B. Chamber S is initially 
evacuated. The entire system is maintained at temperature T. 

The left-hand sliding wall is permeable to component A, but not to 
component B. The fixed partition is permeable to component B, but not 
to component A. The right-hand sliding wall is impermeable to either 
component. 

The coupled sliding walls are then pushed quasi-statically to the right 
until Vp = Vii = 0 and Va = V = V0 • Chamber a then contains pure A 
and chamber y contains pur~ B. The initial mixture, of volume V0 , 

thereby is separated into two pure components, each of volume V0 • 
According to Gibbs's theorem the final entropy should be equal to the 
initial entropy, and we shall now see directly that this is, in fact, true. 
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FIGURE 32 
Separation of a mixture of ideal gases, 
demonstrating Gibbs's theorem. 

We first note that the second of equations 3.39, stating that the energy 
is a function of only T and the mole number, ensures that the final energy 
is equal to the initial energy of the system. Thus - Tl1S is equal to the 
work done in moving the coupled walls. 

The condition of equilibrium with respect to transfer of component A 
across the left-hand wall is µA.a= µA,P· It is left to Problem 3.4-14 to 
show that the conditions µA,a = µA,P and µ 8,p = µ 8 ,Y imply that 

That is, the total force on the coupled moveable walls (P 0 - Pµ + Py) 
vanishes. Thus no work is done in moving the walls, and consequently no 
entropy change accompanies the process. The entropy of the original 
mixture of A and B, in a common volume V0 , is precisely equal to the 
entropy of pure A and pure B, each in a separate volume Vo-This is 
Gibbs's theorem. 

Finally, we note that the simple ideal gas considered in this section is a 
special case of the general ideal gas, which encompasses a very wide class 
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of real gases at low or moderate pressures. The general ideal gas is again 
characterized by the mechanical equation of state PV = NRT (equation 
3.25), and by an energy that again is a function of the temperature 
only-but not simply a linear function. The general ideal gas will be 
discussed in detail in Chapter 13, and statistical mechanical derivations of 
the fundamental equations will emerge in Chapter 16. 

PROBLEMS 

Note that Problems 3.4-1, 3.4-2, 3.4-3, and 3.4-8 refer to "quasi-static 
processes"; such processes are to be interpreted not as real processes but merely 
as loci of equilibrium states. Thus we can apply thermodynamics to such 
quasi-static "processes"; the work done in a quasi-static change of volume (from 
V1 to V2 ) is W = - f PdV and the heat transfer is Q = JTdS. The relationship of 
real processes to these idealized "quasi-static processes" will be discussed in 
Chapter 4. 

3.4-1. A "constant volume ideal gas thermometer" is constructed as shown 
(schematically) in Fig. 3.3. The bulb containing the gas is constructed of a 
material with a negligibly small coefficient of thermal expansion. The point A is a 
reference point marked on the stem of the bulb. The bulb is connected by 
a flexible tube to a reservoir of liquid mercury, open to the atmosphere .• The 
mercury reservoir is raised or lowered until the mercury miniscus coincides with 
the reference point A. The height h of the mercury column is then read. 
a) Show that the pressure of the gas is the sum of the external (atmospheric) 
pressure plus the height h of the mercury column multiplied by the weight per 
unit volume of mercury (as measured at the temperature of interest). 
b) Using the equation of state of the ideal gas, explain how the temperature of 
the gas is then evaluated. 

A 

T 
l Hg 

FIGURE33 
Constant-volume ideal gas thermometer. 
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c) Describe a "constant pressure ideal gas thermometer" (in which a changing 
volume is directly measured at constant pressure). 
3.4-2. Show that the relation between the volume and the pressure of a mon-
atomic ideal gas undergoing a quasi-static adiabatic compression ( dQ = T dS = 0. 
S = constant) is 

Pv 513 = ( P0vf 3e - lso/ 3R) e 2s/JR = constant 

Sketch a family of such "adiabats" in a graph of P versus V. F md the 
corresponding relation for a simple ideal gas. 
3.4-3. Two moles of a monatom1c ideal gas are at a temperature of 0°C and a 
volume of 45 liters. The gas is expanded adiabatically ( dQ = 0) and quasi-stati-
cally until its temperature falls to - 50°C. What are its imtial and final pressures 
and its final volume? 

Answer: 
P, = 0.1 MPa, = 61 X 10 3 m3 

3.4-4. By carrying out the integral f P dV, compute the work done by the gas m 
Problem 3.4-3. Also compute the initial and final energies, and corroborate that 
the difference in these energies is the work done. 
3.4-5. In a particular engine a gas is compressed in the initial stroke of the piston. 
Measurements of the instantaneous temperature, carried out during the compres-
sion, reveal that the temperature increases accordmg to 

where T0 and V0 are the initial temperature and volume, and 1/ is a constant. The 
gas is compressed to the volume V1 (where V1 < V0 ). Assume the gas to be 
monatomic ideal, and assume the process to be quas1-stat1c. 
a) Calculate the work W done on the gas. 
b) Calculate the change m energy AU of the gas. 
c) Calculate the heat transfer Q to the gas (through the cylinder walls) by using 
the results of (a) and ( b ). 
d) Calculate the heat transfer directly by integratmg dQ = T dS. 
e) From the result of ( c) or ( d ), for what value of 1/ is Q = O? Show that for this 
value of 1/ the locus traversed coincides with an adiabat (as calculated in Problem 
3.4-2). 
3.4-6. Find the three equations of state of the "simple ideal gas" (equation 3.34). 
Show that these equations of state satisfy the Euler relation. 
3.4- 7. Find the f~ur equations of state of a two-component mixture of simple 
ideal gases (equations 3.39). Show that these equations of state satisfy the Euler 
relation. 
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3.4-8. If a monatomic ideal gas is permitted to expand into an evacuated region, 
thereby increasing its volume from V to AV, and if the walls are rigid and 
adiabatic, what is the ratio of the initial and final pressures? What is the ratio of 
the inttial and final temperatures? What is the difference of the inttial and final 
entropies? 
3.4-9. A tank has a volume of 0.1 m3 and 1s filled with He gas at a pressure of 
5 X 106 Pa. A second tank has a volume of 0.15 m3 and is filled with He gas at a 
pressure of 6 X 106 Pa. A valve connecting the two tanks is opened. Assuming He 
to be a monatomic ideal gas and the walls of the tanks to be adiabatic and ng,d, 
find the final pressure of the system. 
Hmt: Note that the internal energy is constant. 

Answer. 
P1 = 5.6 X 106 Pa 

3.4-10. 
a) If the temperatures within the two tanks of Problem 3.4-9, before opening the 
valve, had been T = 300 K and 350 K, respectively, what would the final 
temperature be? 
b) If the first tank had contained He at an initial temperature of 300 K, and the 
second had contained a diatomic ideal gas with c = 5/2 and an initial tempera-
ture of 350 K, what would the final temperature be? 

Answer: 
a) ~= 330 K 
b) 7t = 337 K 

3.4-11. Show that the pressure of a multicomponent simple ideal gas can be 
written as the sum of "partial pressures" ~' where = ~RT/ V. Thei,e "partial 
pressures" are purely formal quantities not subject to experimental observation. 
(From the mechanistic viewpoint of kinetic theory the partial pressure P, is the 
contribution to the total pressure that result~ from bombardment of the wall by 
molecules of species ,-a distinction that can be made only when the molecules 
are nonmteracting, as in an ideal gas.) 
3.4-12. Show that µ1, the electrochemical potential of the 1th component in a 
multicomponent simple ideal gas, satisfies 

( N,v 0 ) µ1 = RTln V +(function of T) 

and find the explicit form of the "function of T." 
Show that µ, can be expressed m terms of the "partial pressure" (Problem 

3.4-11) and the temperature. 
3.4-13. An impermeable, diathermal, and rigid partition divides a container into 
two subvolumes, each of volume V. The subvolumes contam, respectively, one 
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mole of Hz and three moles of Ne. The system is maintained at constant 
temperature T. The partition is suddenly made permeable to H2 , but not to Ne, 
and equilibrium is allowed to reestablish. Find the mole numbers and the 
pressures. 
3.4-14. Use the results of Problems 3.4-11 and 3.4-12 to estabfo,h the results 
P0 = P-r and Pp = 2P0 in the demonstration of Gibbs's theorem at the end of this 
section. 
3.4-15. An impermeable, diathermal and rigid partition divides a container into 
two subvolumes, of volumes n V0 and m V0 • The subvolumes contain, respectively, 
n moles of Hz and m moles of Ne, each to be considered as a simple ideal gas. 
The system is maintained at constant temperature T. The partition 1s suddenly 
ruptured and equilibrium is allowed to re-establish. Find the initial pressure in 
each subvolume and the final pressure. Find the change in entropy of the system. 
How is this result related to the "entropy of mixing" (the last term in equation 
3.40)? 

3-5 THE "IDEAL VAN DER WAALS FLUID" 

Real gases seldom satisfy the ideal gas equation of state except in the 
limit of low density. An improvement on the mechanical equation of state 
(3.28) was suggested by J. D. van der Waals in 1873. 

p = RT _ !!._ 
V - b V2 

(3.41) 

Here a and b are two empirical constants characteristic of the particular 
gas. In strictly quantitative terms the success of the equation has been 
modest, and for detailed practical applications it has been supplanted by 
more complicated empirical equations with five or more empirical con-
stants. Nevertheless the van der Waals equation is remarkably successful 
in representing the qualitative features of real fluids, including the 
gas-liquid phase transition. 

The heuristic reasoning that underlies the van der Waals equation is 
intuitively plausible and informative, although that reasoning lies outside 
the domain of thermodynamics. The ideal gas equation P = RT /v is 
known to follow from a model of point molecules moving independently 
and colliding with the walls to exert the pressure P. Two simple correc-
tions to this picture are plausible. The first correction recognizes that the 
molecules are not point particles, but that each has a nonzero volume 
b/NA. Accordingly, the volume Vin the ideal gas equation is replaced by 
V - Nb; the total volume diminished by the volume Nb occupied by the 
molecules themselves. 

The second correction arises from the existence of forces between the 
molecules. A molecule in the interior of the vessel is acted upon by 
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intermolecular forces in all directions, which thereby tend to cancel. But a 
molecule approaching the wall of the contamer experiences a net back-
ward attraction lo the remaining molecules, and this force in turn reduces 
the effective pressure that the molecule exerts on colliding with the 
container wall. This diminution of the pressure should be proportional to 
the number of interacting pairs of molecules, or upon the square of the 
number of molecules per unit volume (l/v 2 ); hence the second term in 
the van der Waals equation. 

Statistical mechanics provides a more quantitative and formal deriva-
tion of the van der Waals equation, but it also reveals that there are an 
infinite series of higher order corrections beyond those given in equation 
3.41. The truncation of the higher order terms lo give the simple van der 
Waals equation results in an equation with appropriate qualitative fea-
tures and with reasonable (but not optimum) quantitative accuracy. 

The van der Waals equation must be supplemented with a thermal 
equation of state in order lo define the system fully. It is instructive not 
simply to appeal lo experiment, but rather to inquire as lo the simplest 
possible (and reasonable) thermal equation of stale that can be paired 
with the van der Waals equation of state. Unfortunately we are not free 
simply lo adopt the thermal equation of state of an ideal gas, for 
thermodynamic formalism imposes a consistency condition between the 
two equations of state. We shall be forced to alter the ideal gas equation 
slightly. 

We write the van der Waals equation as 

P R a 1 -----
T v - b v2 T (3.42) 

and the sought for additional equation of state should be of the form 

1 
T = f(u, v) (3.43) 

These two equations would permit us to integrate the molar equation 

1 p 
ds = - du+ -dv T T (3.44) 

to obtain the fundamental equation. However, if ds is to be a perfect 
differential, it is required that the mixed second-order partial derivatives 
should be equal 

a2s a2s 
av au = au av (3.45) 
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or 

(3.46} 

whence 

(3.47) 

This condition can be written as 

(3.48} 

That is, the function 1/T must depend on the two variables 1/v and u/a 
in such a way that the two derivatives are equal. One possible way of 
accomplishing this is to have 1/T depend only on the sum (1/v + u/a). 
We first recall that for a simple ideal gas 1/T = cR/u; this suggests that 
the simplest possible change consistent with the van der Waals equation is 

1 cR 
T u + a/v 

(3.49} 

For purposes of illustration throughout this text we shall refer to the 
hypothetical system characterized by the van der Waals equation of state 
(3.41) and by equation 3.49 as the "ideal van der Waals fluid." 

We should note that equation 3.41, although referred to as the" van der 
Waals equation of state," is not in the appropriate form of an equation of 
state. However, from equations 3.49 and 3.42 we obtain 

p R acR (3.50) -=------
T v- b uv2 + av 

The two preceding equations are the proper equations of state in the 
entropy representation, expressing 1/T and P /T as functions of u and v. 

With the two equations of state we are now able to obtain the 
fundamental relation. It is left to the reader to show that 

S = NRln[(v - b)(u + a/vr] + Ns 0 (3.51) 

where s0 is a constant. As in the case of the ideal gas the fundamental 
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TABLE3.1 
Van der Waals Constants and Molar Heat 
Capacities of Common Gasesu 

Gas a(Pa-m 6) b(J0-6m3) C 

He 0.00346 23.7 1.5 
Ne 0.0215 17.1 1.5 
H2 0.0248 26.6 2.5 
A 0.132 30.2 1.5 
N2 0.136 38.5 2.5 
02 0.138 32.6 2.5 
co 0.151 39.9 2.5 
CO2 0.401 42.7 3.5 
N20 0.384 44.2 3.5 
H20 0.544 30.5 3.1 
CI2 0.659 56.3 2.8 
S0 2 0.680 56.4 3.5 
0 Adapted from Paul S Epstem. Textbook of Thermodynamics, 
Wiley, New York, 1937. 

equation does not satisfy the Nernst theorem, and it cannot be valid at 
very low temperatures. 

We shall see later (in Chapter 9) that the ideal van der Waals fluid is 
unstable in certain regions of temperature and pressure, and that it 
spontaneously separates into two phases ("liquid" and "gas"). The funda-
mental equation (3.51) is a very rich one for the illustration of thermody-
namic principles. 

The van der Waals constants for various real gases are given in Table 
3.1. The constants a and b are obtained by empirical curve fitting to the 
van der Waals isotherms in the vicinity of 273 K; they represent more 
distant isotherms less satisfactorily. The values of c are based on the 
molar heat capacities at room temperatures. 

PROBLEMS 

3.5-1. Are each of the listed pairs of equations of state compatible (recall 
equation 3.46)? If so, find the fundamental equation of the system. 
a) u = aPv and Pv2 = bT 
b) u = aPv 2 and Pv2 = bT 
c) p = . c + buv and T = u 

v a+ buv a+ buv 
3.5-2. Find the relationship between the volume and the temperature of an ideal 
van der Waals fluid in a quasi-static adiabatic expansion (i.e., in an isentropic 
expansion, with dQ = T dS = 0, or S = constant). 
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3.5-3. Repeat Problem 3.4-3 for CO2 , rather than for a monatomic ideal gas. 
Assume CO2 can be represented by an ideal van der Waals fluid with constants as 
given in Table 3.1. 

At what approximate pressure would the term ( - a/ v2 ) in the van der Waals 
equation of state make a 10% correction to the pressure at room temperature? 

Answer: 
vi= 0.091 m3 

3.5-4. Repeat parts (a), (b), and (c) of problem 3.4-5, assuming that 1J = - ! 
and that the gas is an ideal van der Waals fluid. 

Show that your results for ~U and for W (and hence for Q) reduce to the 
results of Problem 3.4-5 (for 1J = - !) as the van der Waals constants a and b go 
to zero, and c = f. Recall that ln(l + x) "' x, for small x. 
3.5-5. Consider a van der Waals gas contained in the apparatus described in 
Problem 3.4-1 (i.e., in the "constant volume gas thermometer"). 
a) Assuming it to be known in advance that the gas obeys a van der Waals 
equation of state, show that knowledge of two reference temperatures enables one 
to evaluate the van der Waals constants a and b. 
b) Knowing the constants a and b, show that the apparatus can then be used as 
a thermometer, to measure any other temperature. 
c) Show that knowledge of three reference temperatures enables one to determine 
whether a gas satisfies the van der Waals equation of state, and if it does, enables 
one to measure any other temperature. 
3.5-6. One mole of a monatomic ideal gas and one mole of Cl 2 are contained in a 
rigid cylinder and are separated by a moveable internal piston. If the gases are at 
a temperature of 300 K the piston is observed to be precisely in the center of the 
cylinder. Find the pressure of each gas. Treat Cl 2 as a van der Waals gas (see 
Table 3.1). 

Answer: 
P = 3.5 X 107 Pa 

3-6 ELECTROMAGNETIC RADIATION 

If the walls of any "empty" vessel are maintained at a temperature Tit 
is found that the vessel is, in fact, the repository of electromagnetic 
energy. The quantum theorist might consider the vessel as containing 
photons, the engineer might view the vessel as a resonant cavity support-
ing electromagnetic modes, whereas the classical thermodynamicist might 
eschew any such mechanistic models. From any viewpoint, the empir-
ical equations of state of such an electromagnetic cavity are the 
"Stefan-Boltzmann Law" 

U = bVT 4 (3.52) 
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and 

(3.53) 

where b is a particular constant (b = 7.56 X 10- 16 J/m 3 K4 ) which will 
be evaluated from basic principles in Section 16.8. It will be noted that 
these empirical equations of state are functions of U and V, but not of N. 
This observation calls our attention to the fact that in the "empty" cavity 
there exist no conserved particles to be counted by a parameter N. The 
electromagnetic radiation within the cavity is governed by a fundamental 
equation of the form S = S( U, V) in which there are only two rather than 
three independent extensive parameters! 

For electromagnetic radiation the two known equations of state con-
stitute a complete set, which need only be substituted in the truncated 
Euler relation 

1 p 
S=-U+-V T T (3.54) 

to provide a fundamental relation. For this purpose we rewrite equations 
3.52 and 3.53 in the appropriate form of entropic equations of state 

= bl/4( ~r14 (3.55) 

and 

p = .!.bl/4( ur/4 
T 3 V (3.56) 

so that the fundamental relation becomes, on substitution into 3.54 

(3.57) 

PROBLEMS 

3.6-1. The universe is considered by cosmologists to be an expanding electromag-
netic cavity containing radiation that now is at a temperature of 2.7 K. What will 
be the temperature of the radiation when the volume of the universe is twice its 
present value? Assume the expansion to be isentropic (this being a nonobvious 
prediction of cosmological model calculations). 
3-6.2. Assuming the electromagnetic radiation filling the universe to be in equi-
librium at T = 2. 7 K, what is the pressure associated with this radiation? Express 
the answer both in pascals and in atmospheres. 
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3.6-3. The density of matter (primarily hydrogen atoms) in intergalactic space is 
such that its contribution to the pressure is of the order of 10 23 Pa. 
a) What is the approximate density of matter (in atoms/m 3 ) m intergalactic 
space? 
b) What is the ratio of the kinetic energy of matter to the energy of radiation in 
intergalactic space? (Recall Problems 3.6-1 and 3.6-2.) 
c) What is the ratio of the total matter energy (i.e., the sum of the kinetic energy 
plus the relativistic energy mc2 ) to the energy of radiation in intergalactic space? 

3-7 THE "RUBBER BAND" 

A somewhat different utility of the thermodynamic formalism is il-
lustrated by consideration of the physical properties of a rubber band; 
thermodynamics constrains and guides the construction of simple phe-
nomenological models for physical systems. 

Let us suppose that we are interested in building a descriptive model for 
the properties of a rubber band. The rubber band consists of a bundle of 
long-chain polymer molecules. The quantities of macroscopic interest are 
the length L, the tension fr, the temperature T, and the energy U of the 
rubber band. The length plays a role analogous to the volume and the 
tension plays a role analogous to the negative pressure ( fr - - P). An 
analogue of the mole number might be associated with the number of 
monomer units in the rubber band (but that number is not generally 
variable and it can be taken here as constant and suppressed in the 
analysis). 

A qualitative representation of experimental observations can be sum-
marized in two properties. First, at constant length the tension increases 
with the temperature-a rather startling property which is in striking 
contrast to the behavior of a stretched metallic wire. Second, the energy is 
observed to be essentially independent of the length, at least for lengths 
shorter than the "elastic limit" of the rubber band (a length corresponding 
to the" unkinking" or straightening of the polymer chains). 

The simplest representation of the latter observation would be the 
equation 

(3.58) 

where c is a constant and L0 (also constant) is the unstretched length of 
the rubber band. The linearity of the length with tension, between the 
unstretched length L0 and the elastic limit length L 1, is represented by 

L-L 
fr= bT L _ Lo , L 0 < L < L1 (3.59) 

1 () 

where b is a constant. The insertion of the factor T in this equation 
(rather than T 2 or some oth~r function of T) is dictated by the thermody-
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namic condition of consistency of the two equations of state. That is, as in 
equation 3.46 

a~( ~L = a~(-;), (3.60) 

which dictates the linear factor T in equation (3.59). Then 

1 :Y dU L - L 0 
dS=TdU-TdL=cL 0 U-bL -L dL 

l 0 
(3.61) 

and the fundamental equation correspondingly is 

(3.62) 

Although this fundamental equation has been constructed on the basis 
only of the most qualitative of information, it does represent empirical 
properties reasonably and, most important, consistently. The model il-
lustrates the manner in which thermodynamics guides the scientist in 
elementary model building. 

A somewhat more sophisticated model of polymer elasticity will be 
derived by statistical mechanical methods m Chapter 15. 

PROBLEMS 

3.7-1. For the rubber band model, calculate the fractional change m (L - L0 ) 

that results from an increase l>T m temperature, at constant tension. Expre~s the 
result m terms of the length and the temperature. 
3.7-2. A rubber band is stretched by an amount dl, at con<;tant T. Calcul,tte the 
heat transfer dQ to the rubber band. Also calculate the work done. How are these 
related and why? 
3.7-3. If the energy of the unstretched rubber band were found to increase qua-
dratically with T, so that equation 3.58 were to be replaced by U=cL 0P, would 
equation 3.59 require alteration? Again find the fundamental equation of the 
rubber band. 

3-8 UNCONSTRAINABI.E VARIABLES; MAGNETIC SYSTEMS 

In the precedmg sections we have seen examples of several specific 
systems. emphasizing the great d1ver!>ity of types of system~ to whteh 
thermodynamics applies and illustrating the constramts on analytic mod-
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eling of simple systems. In this section .. give an example of a magnetic 
system. Here we have an additional purpose, for although the general 
structure of thermodynamics is represented by the examples already given, 
particular "idiosyncrasies" are associated with certain thermodynamic 
par~meters. Magnetic systems are particularly prone to such individual 
peculiarities, and they well illustrate the special considerations that occa-
sionally are required. 

In order to ensure magnetic homogeneity we focus attention on el-
lipsoidal samples in homogeneous external fields, with one symmetry axis 
of the sample parallel to the external field. For simplicity we assume no 
magnetocrystalline anisotropy, or, if such exists, that the "easy axis" lies 
parallel to the external field. Furthermore we initially consider only 
paramagnetic or diamagnetic systems-that is, systems in which the 
magnetization vanishes in the absence of an externally imposed magnetic 
field. In our eventual consideration of phase transitions we shall include 
the transition to the ferromagnetic phase, in which the system develops a 
spontaneous magnetization. 

As shown in Appendix B, the extensive parameter that characterizes the 
magnetic state is the magnetic dipole moment I of the system. The 
fundamental equation of the system is of the form U = U(S, V, I, N). In 
the more general case of an ellipsoidal sample that is not coaxial with the 
external field, the single parameter I would be replaced by the three 
cartesian coordinates of the magnetic moment: U(S, V, Ix, Iy, / 2 , N). The 
thermodynamic structure of the problem is most conveniently illustrated 
in the one-parameter case. 

The intensive parameter conjugate to the magnetic moment I is B,,, the 
external magnetic field that would exist in the absence of the system 

B = ( iJU) 
e i}[ S,V,N 

(3.63) 

The unit of Be is the tesla (T), and the units of I are Joulesffesla (Jff). 
It is necessary to note a subtlety of definition implicit in these identifi-

cations of extensive and intensive parameters (see Appendix B). The 
energy U is here construed as the energy of the material system alone; in 
addition the "vacuum" occupied by the system must be assigned an 
energy }JIAB;V {where µ0 , the permeability of free space, has the value 
µ 0 = 4'17 X 10- 7 tesla-meters/ampere). Thus the total energy within the 
spatial region occupied by a system is U + }µAB;V. Whether the" vacuum 
term" in the energy is associated with the system or is treated separately 
{as we do) is a matter of arbitrary choice, but considerable confusion can 
arise if different conventions are not carefully distinguished. To repeat, the 
energy U is the change in energy within a particular region in the field 
when the material system is introduced; it excludes the energy !µ.iB;V of 
the region prior to the introduction of the system. 
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The Euler relation for a magnetic system is now 

U = TS - PV + Bel + µN (3.64) 

and the Gibbs-Duhem relation is 

S dT - V dP + I dBe + Ndµ = 0 (3.65) 

An "idiosyncrasy" of magnetic systems becomes evident if we attempt 
to consider problems analogous to those of Sections 2.7 and 2.8-namely, 
the condition of equilibrium of two subsystems following the removal of a 
constraint. We soon discover that we do not have the capability of 
constraining the magnetic moment; in practice the magnetic moment is 
always unconstrained! We can specify and control the magnetic field 
applied to a sample Uust as we can control the pressure), and we thereby 
can bring about a desired value of the magnetic moment. We can even 
hold that value of the magnetic moment constant by monitoring its value 
and by continually adjusting the magnetic field-again, just as we might 
keep the volume of a system constant by a feedback mechanism that 
continually adjusts the external pressure. But that is very different from 
simply enclosing the= system in a restrictive wall. There exist no walls 
restrictive with respect to magnetic moment. 

Despite the fact that the magnetic moment is an unconstrainable 
variable, the over-all structure of thermodynamic theory still applies. The 
fundamental equation, the equations of state, the Gibbs-Duhem, and the 
Euler relations maintain their mutual relationships. The nonavailability of 
walls restrictive to magnetic moment can be viewed as a "mere experi-
mental quirk," that does not significantly influence the applicability of 
thermodynamic theory. 

Finally, to anchor the discussion of magnetic systems in an explicit 
example, the fundamental equation of a simple paramagnetic model 
system is 

[ S / 2 ] U = NRToexp NR + Nill (3.66) 

where T0 and / 0 are positive constants. This model does not describe any 
particular known system-it is devised to provide a simple, tractable 
model on which examples and problems can be based, and to illustrate 
characteristic thermomagnetic interactions. We shall leave it to the prob-
lems to explore some of these properties. 

With the magnetic case always in mind as a prototype for generaliza-
tions, we return to explicit consideration of simple systems. 
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PROBLEMS 

3.8-1. Calculate the three equations of state of the paramagnetic model of 
equation 3.66. That is, calculate T(S, I, N), Be(S, I, N), and µ(S, I, N). (Note 
that the fundamental equation of this problem is independent of V, and that 
more generally there would be four equations of state.) Show that the three 
equations of state satisfy the Euler relation. 
3.8-2. Repeat Problem 3.8-1 for a system with the fundamental equation 

V = l~x/ 2 + Neexp(2S1NR) 

where x and E dre positive constants. 

3-9 MOLAR HEAT CAPACITY AND OTHER DERIVATIVES 

The first derivatives of the fundamental equation have been seen to 
have important physical significance. The various second derivatives are 
descriptive of material properties, and these second derivatives often are 
the quantities of most direct physical interest. Accordingly we exhibit a 
few particularly useful second derivatives and illustrate their utility. In 
Chapter 7 we shall return to study the formal structure of such second 
derivatives, demonstrating that only a small number are independent and 
that all others can be related to these few by a systematic "reduction 
scheme." For simple nonmagnetic systems the basic set of derivatives (to 
which a wide set of others can be related) are just three. 

The coefficient of thermal expansion is defined by 

(3.67) 

The coefficient of thermal expansion is the fractional increase in the 
volume per unit increase in the temperature of a system maintained at 
constant pressure (and constant mole numbers). 

The isothermal compressibility is defined by 

(3.68) 

The isothermal compressibility is the fractional decrease in volume per 
unit increase in pressure at constant temperature. 

The molar heat capacity at constant pressure is defined by 

(3.69) 
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The molar heat capacity at constant pressure 1s the quasi-static heat flux 
per mole required to produce unit increase in the temperature of a system 
maintained at constant pressure. 

For systems of constant mole number all other second derivatives can 
be expressed in terms of these three, and these three are therefore 
normally tabulated as functions of temperature and pressure for a wide 
variety of materials. 

The origin of the relationships among second derivatives can be under-
stood in principle at this point, although we postpone a full exploration to 
Chapter 7. Perhaps the simplest such relationship 1s the identity 

(3.70) 

which follows directly from the elementary theorem of calculus to the 
effect that the two mixed second partial derivatives of U with respect to V 
and S are equal 

a(au) a(au) av as = as av (3.71) 

The two quantities appearing in equation (3.70) have direct physical 
interpretations and each can be measured. The quantity ( aT / av) s. ,v is 
the temperature change associated with adiabatic expansion of the volume; 
the quantity (aP/aS)v.v, when written as T(dP/dQ)v.N is the product 
of the temperature and the change in pressure associated with an intro-
duction of heat dQ into a system at constant volume. The prediction of 
equality of these apparently unrelated quantities is a nontrivial result; in 
effect, the first "triumph" of the theory. Needless to say, the prediction is 
corroborated by experiment. 

The analogue of equation 3.70, in the entropy representation, is 

(3.72) 

and we recognize that this is precisely the identity that we invoked in 
equation 3.46 in our quest for a thermal equation of state to be paired 
with the van der Waals equation. 

In Chapter 7 we show in considerable detail that these equalities are 
prototypes of a general class of analogous relationships ref erred to as 
Maxwell relations. Although the Maxwell relations have the simple form 
of equality of two derivatives, they, in turn, are degenerate cases of a more 
general theorem that asserts that there must exist a relation among any 
four derivatives. These general relations will permit any second derivative 
(at constant N) to be expressed in terms of the basic set cP, a, and KT. 
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To illustrate such anticipated relatiunships we first introduce two ad. 
ditional second derivatives of practical interest; the adiabatic com-
pressibility Ks and the molar heat capacity at constant volume cv. 

The adiabatic compressibility is defined by 

K = _ .!.(~) = _ 1-( av) 
.. v aP s v aP s (3.73) 

This quantity characterizes the fractional decrease in volume associated 
with an isentropic increase in pressure (i.e., for a system that is adiabati-
cally insulated). 

The molar heat capacity at constant volume, defined by 

cv = r( ;; L = ( !: L = ( !~ L (3.74) 

measures the quasi-static heat flux per mole required to produce unit 
increase in the temperature of a system maintained at constant volume. 

In Chapter 7 we show that 

and 
TVa 2 

"r= Ks+ -N 
Cp 

(3.75) 

(3.76) 

Again, our purpose here is not to focus on the detailed relationships (3.75) 
and (3.76), but to introduce definitions of cP, a, and K 7 , to can attention 
to the fact that cP, a, and K 7 are nonna1ly tabulated as functions of T 
and P, and to stress that all other derivatives (such as cv and Ks) can be 
related to cP, a, and Kr- A systematic approach to an such equalities, and 
a mnemonic device for recalling them as needed, is presented in Chap-
ter 7. 

Problem 3.9-6 is particularly recommended to the student. 

Example 
For a particular material cp, a, and "r are tabulated as functions of T and P. 
Find the molar volume v as a function of T and P. 

Solution 
We consider the "T-P plane." The quantities cp, a, and "r are known at all 
points in the plane, and we seek to evaluate v(T, P) at an arbitrary point in the 
plane. Then 

dv = ( ;; ) r dP + ( ;; ) P dT 

= -vKrdP + vadT 



or 
dv 
- = -KrdP + adT 
V 
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Jf (T0 , P0 ) is a chosen reference point in the plane, and if (T', P') is a point of 
interest, we can integrate along the path shown (or any other convenient path). 
for the path that we have chosen the term in dT vanishes for the "horizontal" 
section of the path, and the term in dP vanishes for the " vertical" section of the 
path, so that 

f dv 1T' P' v = a(T, P0 ) dT- J. "T(T', P) dP 
To Po 

or 
v' T' P' 

In-= 1 a(T,P 0 )dT- f. "r(T',P)dP 
Vo T0 P0 

The value of the molar volume at the reference point ( v0 ) must be specified; we 
are then able to relate all other volumes to this volume. 

PROBLEMS 

3.9-1. 
a) Show that for the multicomponent simple ideal gas 

a= l/T 

"r = l/P 
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and 
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c 1 
Ks= c + 1 p 

cp= (c+ l)R 

b) What is the value of c for a monatomic ideal gas? 
c) Using the values found in part (a), corroborate equations 3.75 and 3.76. 
3.9-2. Corroborate equation 3.70 for a multicomponent simple ideal gas, showing 
that both the right- and left-hand members of the equation equal - T /cV (where 
c is defined in Problem 3.9-1). 
3.9-3. Compute the coefficient of expansion a and the isothermal compressibility 
Kr in terms of P and v for a system with the van der Waals equation of state 
(equation 3.41). 
3.9-4. Compute Cp, cv, Ks, and Kr for the system in Problem 1.10-l(a). With these 
values corroborate the validity of equations 3.75 and 3.76. 
3.9-5. From equations 3.75 and 3.76 show that 

cp/cv = Kr/Ks 

3.9-6. A simple fundamental equation that exhibits some of the qualitative 
properties of typical crystaline solids is 

u = Aeb(v-v 0>'s4f3e ,tJR 

where A, b, and v0 are positive constants. 
a) Show that the system satisfies the Nernst theorem. 
b) Show that cv is proportional to T 3 at low temperature. This is commonly 
observed (and was explained by P. Debye by a statistical mechanical analysis, 
which will be developed in Chapter 16). 
c) Show that cv-+ 3k 8 at high temperatures. This is the "equipartition value," 
which is observed and which will be demonstrated by statistical mechanical 
analysis in Chapter 16. 
d) Show that for zero pressure the coefficient of thermal expansion vanishes in 
this model-a result that is incorrect. Hint: Calculate the value of v at P = O. 

3.9-7. The density of mercury at various temperatures is given here in grams/en?. 

13 .6202 ( -10°C) 
13.5955 (0°C) 
13.5708 (10°C) 
13.5462 (20°C) 

13.5217 (30°C) 
13.4973 (40°C) 
13.4729 (50°C) 
13.3522 (100°C} 

13.3283 (110°C) 
13.1148 (200°c) 
12.8806 (300°C) 
12.8572 (310°C) 

Calculate a at 0°C, at 45°C, at 105°C, and at 305°C. 
Should the stem of a mercury-in-glass thermometer be marked off in equal 

divisions for equal temperature intervals if the coefficient of tJ- '11al expansion of 
glass is assumed to be strictly constant? 
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3.9-8. For a particular material c p, a, and Kr can be represented empirically by 
power series in the vicinity of T0 , P0 , as follows 

Cp = C~ + Ac'T + Bc72 + Dcp + Ecp 2 + E',;-rp 

a = aO + Aa'T + Ba-r2 + Dap + EaP2 + FaTP 

KT= Ko + A"T + B,.-r2 + D,.p + E,.p 2 + F,.-rp where -r = T - T0 ; p = P - P0 

Find the molar volume explicitly as a function of T and P in the vicinity of 
(To, Po)-
3.9-9. Calculate the molar entropy s(T, P0 ) for fixed pressure P0 and for tempera-
ture Tin the vicinity of T0. Assume that cP, a, and KT are given in the vicinity of 
(T0 , P0 ) as in the preceding problem, and assume that s(T0 , P0 ) is known. 
3.9-10. By analogy with equations 3.70 and 3.71 show that for a paramagnetic 
system 

( aBe) ( aT) as 1.V,N = aJ S,V,N 

or, inverting, 

T( as ) _ T( a1) 
aBe IV N - aT S,V,N 

Interpret the physical meaning of this relationship. 
3.9-11. By analogy with equations 3.70 and 3.71 show that for a paramagnetic 
system 

( aBe) ( ap) av S,l,N = - ai S,V,N 

3.9-12. The magnetic analogues of the molar heat capacities cp and cv are c8 and 
c,. Calculate c8 (T, Be, N) and c1(T, Be, N) for the paramagnetic model of 
equation 3.66. (Note that no distinction need be made between c,.v and c,.P for 
this model, because of the absence of a dependence on volume in the fundamental 
relation (3.66). Generally all four heat capacities exist and are distinct.) 
3.9-13. The (isothermal) molar magnetic susceptibility is defined by 

P.o ( a1 ) 
X = N aBe T 

Show that the susceptibility of the paramagnetic model of equation 3.66 varies 
inversely with the temperature, and evaluate Xi, defined as the value of x for 
T lK. 
3.9-14. Calculate the adiabatic molar susceptibility 

_ P.o ( a1 ) 
Xs = N aBe s 

as a function of T and Be for __ .e paramagnetic model of equation 3.66. 
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3.9-15. Calculate the isothermal and adia~~dc molar susceptibilities (defined in 
Problems 3.9-13 and 3.9-14) for the system with fundamental equation 

µ. 12 
U = 2° Nx + Neexp(2SINR) 

How are each of these related to the constant "x" appearing in the fundamental 
relation? 
3.9-16. Show that for the system of Problem 3.8-2 

( aT) _ ( aT) _ (as) _ ( ~) _ 0 aBe s - a1 s - a1 r - aBe 7 -

and 

( : L = ( :e L = ( ;~) B, = ( ;~) B, = O 

That is, there is no "coupling" between the thermal and magnetic properties. 
What is the (atypical) feature of the equation of state of this system that leads to 
these results? 
3.9-17. Calculate the heat transfer to a particular system if 1 mole is taken from 
(T0 , P0 ) to (2T0 , 2P0 ) along a straight line in the T-P plane. For this system it is 
known that: 

a(T, P) = a0 • ( ~)~,where a0 is a constant 

cp(T, P) = ci, a constant 

Kr(T, P) = Ki, a constant 

Hint: Use the relation (as;aP)r= -(av;aT)p, analogous to equations 3.70 
through 3.72 (and to be derived systematically in Chapter 7), to establish that 
dQ = Tds = cpdT- TvadP. 


