
7 
MAXWELL RELATIONS 

7-1 THE MAXWELL RELATIONS 

In Section 3.6 we observed that quantities such as the isothermal 
compressibility, the coefficient of thermal expansion, and the molar heat 
capacities describe properties of physical interest. Each of these is 
essentially a derivative ( ax; aYh w in which the variables are either 
extensive or intensive thermodynamic parameters. With a wide range of 
extensive and intensive parameters from which to choose, in general 
systems, the number of such possible derivatives is immense. But there are 
relations among such derivatives, so that a relatively small number of 
them can be considered as independent; all others can be expressed in 
terms of these few. Needless to say such relationships enormously simplify 
thermodynamic analyses. Nevertheless the relationships need not be mem-
orized. There is a simple, straightforward procedure for producing the 
appropriate relationships as needed in the course of a thermodynamic 
calculation. That procedure is the subject of this chapter. 

As an illustration of the existence of such relationships we recall 
equations 3.70 to 3.71 

a2u a2u (7.1) asav avas 
or· 

-( ~;) V.N 1 .N 1 , = ( :~t.N1,N2, (7.2) 

This relation is the prototype of a whole class of similar equalities known 
as the Maxwell relations. These relations arise from the equality of the 
mixed partial derivatives of the fundamental relation expressed in any of 
the various possible alternative representations. 
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Given a particular thermodynamic potential, expressed in terms of its 
( t + 1) natural variables, there are t( t + 1 )/2 separate pairs of mixed 
second derivatives. Thus each potential yields t(t + 1)/2 Maxwell rela-
tions. 

For a single-component simple system the internal energy is a function 
of three variables (t = 2), and the three [ = (2 · 3)/2] pairs of mixed 
second derivatives are a2u;as av= a2u;av as, a2u;as aN = 
a2u;aN as, and a2u;avaN = a2u;aN av. The complete set of Maxwell 
relations for a single-component simple system is given in the following 
listing, in which the first column states the potential from which the 
relation derives, the second column states the pair of independent varia-
bles with respect to which the mixed partial derivatives are taken, and the 
last column states the Maxwell relations themselves. A mnemonic diagram 
to be described in Section 7.2 provides a mental device for recalling 
relations of this form. In Section 7.3 we present a procedure for utilizing 
these relations in the solution of thermodynamic problems. 

u s,v ( :~L N = -( :;L.N (7.3) 

dU = TdS - PdV + p.dN S,N ( ;~L.. = (;~L.N (7.4) 

V,N -( Jf L.v = ( ;~ L.N (7.5) 

U(T)= F T,V ( :it.N = ( !;L,N (7.6) 

dF= -SdT- PdV+ p.dN T,N -( !!)n = ( 1i). N (7.7) 

V,N -( if t., = ( !~LN (7 8) 

U[P]= H S,P ( !~L.N = ( !~L V 
(7.9) 

dl/ = TdS t VdP + p.dN S,N ( ;~).H = ( !~L N 
(710) 

P,N ( ;~L p = ( ;~)o (7 11) 

U[p.) s,v (:~)s,, = -(::)v.1, (7 12) 

dU [p.) = TdS - PdV - Ndp. S, p. ( !: t V = -( -:; L µ 
(713) 

V,µ ( ~=t I= ({ttµ (7 14) 
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U[T, P] = G T,P -( ::t.N = ( :~) P.N (7.15) 

dG = -SdT + VdP + p.dN T,N -( !!t p = (!~L.N (7.16) 

P,N ( i~tp = ( ;~), N (7.17) 

U[T,p.] T,V ( !~tµ ( !~L.µ (7 18) 

dU[T,p.] = -SdT- PdV T,p. ( !!L.v = ( ~;L.µ (7.19) 

-Ndp. 

V.p. ( ~=L.~ = ( i~tµ (7 20) 

U[P,p.] S,P ( ;~tµ = 
( av) as P.,, (7.21) 

dU[P,p.] = TdS + VdP + Ndp. S,p. ( ::L p = -( ~; L µ (7.22) 

P,p. ( !.~L.p = -( %~L µ 
(7.23) 

7-2 A THERMODYNAMIC MNEMONIC DIAGRAM 

A number of the most useful Maxwell relations can be remembered 
conveniently in terms of a simple mnemonic diagram. 1 This diagram, 
given in Fig. 7 .1, consists of a square with arrows pointing upward along 
the two diagonals. The sides are labeled with the four common thermody~ 
namic potentials, F, G, H, and U, in alphabetical order clockwise around 
the diagram, the Helmholtz potential Fat the top. The two corners at the 
left are labeled with the extensive parameters V and S, and the two 
corners at the right are labeled with the intensive parameters T and P. 
("Valid Facts and Theoretical Understanding Generate Solutions to Hard 
Problems" suggests the sequence of the labels.) 

Each of the four thermodynamic potentials appearing on the square is 
flanked by its natural independent variables. Thus U is a natural function 
of V and S; F is a natural function of V and T; and G is a natural 
function of T and P. Each of the potentials also depends on the mole 
numbers, which are not indicated explicitly on the diagram. 

111us diagram was presented by Professor Max Born in 1929 in a lecture heard by Professor T1sza 
It appeared in the literature in a paper by F. 0 Koenig, J. Chem. Phys 3, 29 (1935), and 56, 4556 
(1972) See also L T. Klauder, Am. Journ. Phys. 36, 556 (1968), and a number o{ other vanants 
presented by a succession of authors in this journal. 
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F T 

FIGURE 71 
s H P The thermodynamic ~quare. 

In the differential expression for each of the potenhals, in terms of the 
differentials of its natural (flanking) variables, the associated algebraic 
sign is indicated by the diagonal arrow. An arrow pointing away from a 
natural variable implies a positive coefficient, whereas an arrow pointing 
toward a natural variable implies a negative coefficient. This scheme 
becomes evident by inspection of the diagram and of each of the following 
equations: 

dV= TdS-PdV+'[,µkdNk 
k 

dF = -SdT- PdV + '[,µA dNk 
k 

dG = -SdT + VdP + '[,µkdN" 
k 

dH = TdS + VdP + '[,µkdN" 
k 

(7.24) 

(7.25) 

(7 .26) 

(7 .27) 

Finally the Maxwell relations can be read from the diagram. We then 
deal only with the corners of the diagram. The labeling of the four corners 
of the square can easily be seen to be suggestive of the relationship 

V r----, 
I I 

: l' : s L ___ _i p 

r----, T 
I I 

: l'\ : SL_ __ _J P 

( constant N1 , N2 , •.• ) (7.28) 

By mentally rotating the square on its side, we find, by exactly the same 
construction 

Sr----, 
I I 

: l' : PL ___ _J T 

r----, V 
I I 

: \.i : PL ___ _J T 

( constant N1, N2 , ..• ) (7 .29) 
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The minus sign in this equation is to be inf erred from the unsymmetrical 
placement of the arrows in this case. The two remaining rotations of the 
square give the two additional Maxwell relations 

( !~L = ( :~t ( constant N1, N2 , ••• ) (7.30) 

and 

( :~L = -( !;L ( constant N1 , N2 , ••• ) (7.31} 

These are the four most useful Maxwell relations in the conventional 
applications of thermodynamics. 

The mnemonic diagram can be adapted to pairs of variables other than 
S and V. If we are interested in Legendre transformations dealing with S 
and ~. the diagram takes the form shown in Fig. 7.2a. The arrow 
connecting N1 and µ1 has been reversed in relation to that which previ-
ously connected V and P to ake into account the fact that µ 1 is analogous 
to - P. Equations 7.4, 7.7, 7.13, and 7.19 can be read directly from this 
diagram. Other diagrams can be constructed in a similar fashion, as 
indicated in the general case in Fig. 7.2b. 

U[P 2] 
X1 ~------ P2 

u 

FIGURE 72 

PROBLEMS 

7.2-1. In the immediate vicinity of the state T0 , v0 the volume of a particular 
system of 1 mole is observed to vary according to the relationship 

v = v0 + a(T - T0 ) + b(P - P0 ) 

Calculate the transfer of heat dQ to the system if the molar volume is changed by 
a small increment dv = v - v0 at constant temperature T0 . 

Answer: 
aQ = T( as) dV = T( aP) dV = - abT dV av T ar v 
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7.2-2. For a particular system of 1 mole, in the vicinity of a particular state, a 
change of pressure dP at constant T is observed to be accompanied by a heat flux 
dQ = A dP. What is the value of the coefficient of thermal expansion of this 
system, in the same state? 
7.2-3. Show that the relation 

1 
a= T 

implies that cp is independent of the pressure 

( acP) = 0 aP r 

7-3 A PROCEDURE FOR THE REDUCTION OF 
DERIVATIVES IN SINGLE-COMPONENT SYSTEMS 

In the practical applications of thermodynamics the experimental situa-
tion to be analyzed frequently dictates a partial derivative to be evaluated. 
For instance, we may be concerned with the analysis of the temperature 
change that is required to maintain the volume of a single-component 
system constant if the pressure is increased slightly. This temperature 
change is evidently 

dT = ( aT) dP 
aP v.N 

(7.32) 

and consequently we are interested in an evaluation of the derivative 
( ar /aP)v,N. A number of similar problems will be considered in Section 
7.4. A general feature of the derivatives that arise in this way is that they 
are likely to involve constant mole numbers and that they generally 
involve both intensive and extensive parameters. Of all such derivatives, 
only three can be independent, and any given derivative can be expressed in 
terms of an arbitrarily chosen set of three basic derivatives. This set is 
conventionally chosen as cp, a, and Kr. 

The choice of cP, a, and Kr is an implicit transformation to the Gibbs 
representation, for the three second derivatives in this representation are 
a2g/ aT 2, a2g/ aTaP, and a2g/ aP 2; these derivatives are equal, respec-
tively, to -cp/T, va, and -VKr- For constant mole numbers these are the 
only independent second derivatives. 

All first derivatives ( involving both extensive and intensive parameters) 
can be written in terms of second derivatives of the Gibbs potential, of which 
we have now seen that cp, a, and Kr constitute a complete independent set 
( at constant mole numbers). 

The procedure to be followed in this "reduction of derivatives" is 
straightforward in principle; the entropy S need only be replaced by 
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-aG/aT and V must be replaced by ac;aP, thereby expressing the 
original derivative in terms of second derivatives of G with respect to T 
and P. In practice this procedure can become somewhat involved. 

It is essential that the student of thermodynamics become thoroughly 
proficient in the "reduction of derivatives." To that purpose we present a 
procedure, based upon the "mnemonic square" and organized in a step by 
step recipe that accomplishes the reduction of any given derivative. 
Students are urged to do enough exercises of this type so that the 
procedure becomes automatic. 

Consider a partial derivative involving constant mole numbers. It is 
desired to express this derivative in terms of cp, a, and KT. We first recall 
the following identities which are to be employed in the mathematical 
manipulations (see Appendix A). 

(7.33) 

and 

( ~;) z = ( !! ) z/ ( :~) z (7.34) 

( ~;) z = -(~;)xi( (7.35) 

The following steps are then to be taken in order: 
1. If the derivative contains any potentials, bring them one by one to the 

numerator and eliminate by the thermodynamic square (equations 7.24 to 
7.27). 

Example 
Reduce the derivative ( ap ;au)c,N· 

( :~ L.N = [( :~L.J-l {by7.33) 

= [r( ;; L.N - P( !~L.J-1 {by 1.24) 

= [-r( :;t.N/( :~L.N + P( !;L,N/( :iL.J-1 

(by 7.35) 

= [- -s(ar;aP)s.N + v + P -s(ar;aP)v,N + v] 1 

T -s(ar;as)p.N -s(ar;av)P.N 
(by 7.26) 
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The remammg expression does not contain any potentials but may 
involve a number of derivatives. Choose these one by one and treat each 
according to the following procedure. 

2. If the derivative contains the chemical potential, bring it to the 
numerator and eliminate by means of the Gibbs-Duhem relation, dµ = 
-sdT + vdP. 

Example 
Reduce (aµ;av)s,N. 

( ;~ L.N = -s( !~L.N + v( ~: L. N 
3. If the derivative contains the entropy, bring it to the numerator. If one 

of the four Maxwell relations of the thermodynamic square now eliminates 
the entropy, invoke it. If the Maxwell relations do not eliminate the entropy 
put a ar under as (employ equation 7.34 with w = T). The numerator will 
then be expressible as one of the specific heats (either cl, or cp). 

Example 
Consider the derivative (aT;aP)s.N appearing in the example of step I: 

Example 

( i~t.N = -( !! t.N/( :: L.N 

= ( :~L.N/ ;cp 

{by 7.35) 

{by 7 .29) 

Consider the derivative (as/ av) P. N· The Maxwell relation would give 
(as;av)P.N = (aP;ar>s.N (equation 7.28), which would not eliminate the 
entropy. We therefore do not invoke the Maxwell relation but write 

( as) (as;ar)PN (N/T)cp 
av P,N = (av;aT)P:N = (av;ar)P.N {by 7.34) 

The derivative now contains neither any potential nor the entropy. It 
consequently contains only V, P, T (and N). 

4. Bring the volume to the numerator. The remaining derivative will be 
expressible in terms of a and KT· 

Example 
Given (aT;aP)v.N 

(by 7.35) 
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5. The originally given derivative has now been expressed in terms of the 
four quantities cv, cp, a, and K 7 • The specific heat at constant volume is 
eliminated by the equation 

(7 .36) 

This useful relation, which should be committed to memory, was alluded 
to in equation 3.75. The reader should be able to derive it as an exercise 
(see Problem 7.3-2). 

This method of reduction of derivatives can be applied to multicompo-
nent systems as well as to single-component systems, provided that the 
chemical potentials µ1 do not appear in the derivative (for the 
Gibbs-Duhem relation, which eliminates the chemical potential for 
single-component systems, merely introduces the chemical potentials of 
other components in multicomponent systems). 

PROBLEMS 

7.3-1. Thermodynamicists sometimes refer to the "first T dS equation" and the 
"second T dS equation"; 

TdS = NcvdT+(Ta/Kr)dV 

TdS = NcpdT- TVadP 

Derive these equations. 

( N constant) 

( N constant) 

7.3-2. Show that the second equation in the preceding problem leads directly to 
the relation 

and so validates equation 7.36. 
7.3-3. Calculate ( 8H/aVhNin terms of the standard quantities cp, a, Kr, T, 
and P. · 

7.3-4. Reduce the derivative (av/ as) P· 

7.3-5. Reduce the derivative (as/a f)v. 
7.3-6. Reduce the derivative ( as; a f)p. 
7.3-7. Reduce the derivative (8s/8u)h-

Answer: 

( ~:)T,;' (Ta - I)/Kr 
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7-4 SOME SIMPLE APPLICATIONS 

In this section we indicate several representative applications of the 
manipulations described in Section 7.3. In each case to be considered we 
first pose a problem. Typically, we are asked to find the change in one 
parameter when some other parameter is changed. Thus, in the simplest 
case, we might be asked to find the increase in the pressure of a system if 
its temperature is increased by !::.T, its volume being kept constant. 

In the examples to be given we consider two types of solutions. First, 
the straightforward solution that assumes complete knowledge of the 
fundamental equation, and, second, the solution that can be obtained if 
c P• a, and K 7 are assumed known and if the changes in parameters are 
small. 

Adiabatic Compression 
Consider a single-component system of some definite quantity of matter 
(characterized by the mole number N) enclosed within an adiabatic wall. 
The initial temperature and pressure of the system are known. The system 
is compressed quasi-statically so that the pressure increases from its initial 
value P, to some definite final value P1. We attempt to predict the changes 
in the various thermodynamic parameters ( e.g., in the volume, tempera-
ture, internal energy, and chemical potential) of the system. 

The essential key to the analysis of the problem is the fact that for a 
quasi-static process the adiabatic constraint implies constancy of the 
entropy. This fact follows, of course, from the quasi-static correspondence 
dQ = TdS. 

We consider in particular the change in temperature. First, we assume 
the fundamental equation to be known. By differentiation, we can find the 
two equations of state T = T(S, V, N) and P = P(S, V, N). By knowing 
the initial temperature and pressure, we can thereby find the initial 
volume and entropy. Elimination of V between the two equations of state 
gives the temperature as a function of S, P, and N. Then, obviously, 

!::.T = T(S, P1, N) - T(S, P,, N) (7 .37) 

If the fundamental equation is not known, but cp, a, and KT are given, 
and if the pressure change is small, we have 

dT = ( aT) dP 
aP s.N 

(7 .38) 

By the method of Section 7 .3, we then obtain 

dT= Tua dP 
Cp 

(7.39) 
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The change in chemical potential can be found similarly. Thus, for a 
small pressure change 

dµ = (aµ) dP 
ap S,N 

(7.40) 

(7.41) 

The fractional change in volume associated with an (infinitesimal) 
adiabatic compression is characterized by the adiabatic compressibility Ks, 
previously defined in equation 3.73. It was there stated that Ks can be 
related to K 7 , cP, and a (equation 3.76, and (see also Problem 3.9-5), an 
exercise that is now left to the reader in Problem 7.4-8. 

Isothermal Compression 
We now consider a system maintained at constant temperature and mole 
number and quasi-statically compressed from an initial pressure P, to a 
final pressure Pr We may be interested in the prediction of the changes in 
the values of U, S, V, and µ. By appropriate elimination of variables 
among the fundamental equation and the equations of state, any such 
parameter can be expressed in terms of T, P, and N, and the change in 
that parameter can then be computed directly. 

For small changes in pressure we find 

ds = (as) dP ap T,N 
(7.42) 

= -aVdP (7.43) 

also 

dU= ( au) dP 
ap T,N 

(7.44) 

= (-TaV + PVK7 )dP (7.45) 

and similar equations exist for the other parameters. 
One may inquire about the total quantity of heat that must be extracted 

from the system by the heat reservoir in order to keep the system at 
constant temperature during the isothermal compression. First, assume 
that the fundamental equation is known. Then 

Dt.Q = TDt.S = TS(T, P1 , N) - TS(T, P,, N) (7.46) 
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where S( U, V, N) is reexpressed as a function of T, P, and N in standard 
fashion. 

If the fundamental equation is not known we consider an infinitesimal 
isothermal compression, for which we have, from equation 7.43 

dQ = -TaVdP (7.47) 

Finally, suppose that the pressure change is large, but that the fundamen-
tal equation is not known (so that the solution 7.46 is not available). Then, 
if a and V are known as functions of T and P, we integrate equation 7.47 
at constant temperature 

JP! 
~Q = -T aVdP 

P, 
(7.48) 

This solution must be equivalent to that given in equation 7.46. 

Free Expansion 

The third process we shall consider is a free expansion (recall Problems 
3.4-8 and 4.2-3). The constraints that require the system to have a volume 
V, are suddenly relaxed, allowing the system to expand to a volume ~- If 
the system is a gas (which, of course, does not have to be the case), the 
expansion may be accomplished conveniently by confining the gas in one 
section of a rigid container, the other section of which is evacuated. If the 
septum separating the sections is suddenly fractured the gas sponta-
neously expands to the volume of the whole container. We seek to predict 
the change in the temperature and in the various other parameters of the 
system. 

The total internal energy of the system remains constant during the free 
expansion. Neither heat nor work are transferred to the system by any 
external agency. 

If the temperature is expressed in terms of U, V, and N, we find 

- T, = T(U, ~. N) - T(U, V,, N) (7.49) 

If the volume change is small 

dT= ( aT) dV av u.N 
(7.50) 

-(_!___ - ~)dv 
Ne,, Nc,,KT 

(7.51) 
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This process, unlike the two previously treated, is essentially irreversible 
and is not quasi-static (Problem 4.2-3). 

Example 
In practice the processes of interest rarely are so neatly defined as those just 
considered. No single thermodynamic parameter is apt to be constant in the 
process. More typically, measurements might be made of the temperature during 
the expansion stroke in the cylinder of an engine. The expansion is neither 
isothermal nor isentropic, for heat tends to flow uncontrolled through the cylinder 
walls. Nevertheless, the temperature can be evaluated empirically as a function of 
the volume, and this defines the process. Various other characterizabons of real 
processes will occur readily to the reader, but the general methodology is well 
represented by the following particular example. 

N moles of a material are expanded from V1 to Vi and the temperature is 
observed to decrease from T1 to Ti, the temperature falling linearly with volume. 
Calculate the work done on the system and the heat transfer, expressing each 
result in terms of definite integrals of the tabulated functions cP' a, and K 7 . 

Solution 
We first note that the tabulated functions cp(T, P), a(T, P), Kr(T, P), and 
v(T, P) are redundant. The first three functions imply the last, as has already 
been shown in the example of Section 3.9. 

Turning to the stated problem, the equation of the path in the T-V plane is 
T =A+ BV; A= (T 1 V2 - T2V1)/(V 2 - Vi); B = (T2 - T1)l(V2 - V1) 

Furthermore, the pressure is known at each point on the path, for the known 
function v(T, P) can be inverted to express P as a function of T and v, and 
thence of v alone 

P = P(T, V) = P(A + BV, V) 
The work done in the process is then 

W = f ViP(A + BV, V) dV 
V1 

This integral must be performed numerically, but generally it is well within the 
capabilities of even a modest programmable hand calculator. 

The heat input is calculated by considering S as a function of T and V. 

dS = ( :: L dT + ( :it dV 

N ( aP) = Tc V dT + aT v dV 

= ( NcP - Vai) dT + .!!__ dV 
T Kr Kr 

But on the path, dT = B dV, so that 

( c BVa 2 

dS = NB ; - ---;;;,- + .!!__) dV 
KT 
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Thus the heat input is 

Q = fv 2 [NBcP -(A+ BV)(BVa- l)a/K 7 ] dV 
V1 

Again the factors in the integral must be evaluated at the appropriate values of P 
and T corresponding to the point V on the path, and the integral over V must 
then be carried out numerically. 

It is often convenient to approximate the given data by polynomial expressions 
in the region of interest; numerous packaged computer programs for such "fits" 
are available. Then the integrals can be evaluated either numerically or analyti-
cally. 

Example 
In the P-v plane of a particular substance, two states, A and D, are defined by 

P0 = 104 Pa 

and it is also ascertained that TA = 350.9 K. If 1 mole of this substance is initially 
in the state A, and if a thermal reservoir at temperature 150 K is available, how 
much work can be delivered to a reversible work source in a process that leaves 
the system in the state D? 

The following data are available. The adiabats of the system are of the form 

Pv2 = constant (for s = constant) 

Measurements of cP and a are known only at the pressure of 105 Pa. 

c = Bv 2l 3 
p 

a= 3/T 

(for P = 105 Pa); 

B = 10813 = 464.2 J/m 2 K 

(for P = 105 Pa) 

and no measurements of Kr are available. 
The reader is strongly urged to analyze this problem independently before 

reading the following solution. 

Solution 
In order to assess the maximum work that can be delivered in a reversible process 
A - D it is necessary only to know u0 - uA and s0 - sA. 

The adiabat that passes through the state D is described by Pv2 = 10 2 Pa · m6; 

it intersects the isobar P = 105 Pa at a point C for which 

Pc= 105 Pa vc = 10- 312 m3 = 3.16 X 10- 2 m3 
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As a two-step quasi-static process joining A and D we choose the isobaric process 
A - C followed by the 1sentropic process C - D. By considering these two 
processes in turn we seek to evaluate first Uc - uA and sc - sA and then un - u 
and Sn - Sc, yielding finally Un - uA and sn - sA- c 

We first consider the isobaric process A - C. 

du= Tds-Pdv= (:: -P)dv= (tBv- 113T-PA)dv 

We cannot integrate this directly for we do not yet know T(v) along the isobar. 
To calculate T( v) we write 

( ar) 1 r 
av P = va = 3v 

or integrating 

and 

T = 350.9 X (50v }113 (on P = 105 Pa isobar} 
Returning now to the calculation of Uc - uA 

du= [ }B X 350.9 X (50) 113 - 105 ] dv = 105 dv 
or 

Uc - uA = 105 x(vc - vA) = 1.16 X 103 J 
We now require the difference Un - uc- Along the adiabat we have 

Un - Uc= - [DPdv = -10 2fD~~ = 102 [v.01 - Vc 1] = -2.16 X 103 J 
ve ve i; 

Finally, then, we have the required energy difference 

Un - UA = -103 J 
We now tum our attention to the entropy difference sn - sA = Sc - sA. Along 

the isobar AC 

ds = - dv = -- dv = - Bv- dv ( as) Cp 1 1/3 
av P Tva 3 

and 
Sn - sA = Sc - sA = iB[vf 3 - vY 3 ] = 6.1 J/K 

Knowing Au and As for the process, we turn to the problem of delivering 
maximum work. The increase in entropy of the system permits us to extract 
energy from the thermal reservoir. 

( -Qres} = TresAS = 150 X 6.1 = 916 J 
The total energy that can then be delivered to the reversible work source is 
( - Au) + ( - Q res), or 

work delivered = 1.92 X 10 3 J 
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PROBLEMS 

7.4-1. In the analysis of a Joule-Thomson experiment we may be given the initial 
and final molar volumes of the gas, rather than the initial and final pressures. 
Express the derivative(ar;avh in terms of cp, a, and KT. 
7.4-2. The adiabatic bulk modulus is defined by 

f3s = -v( aP) = -v( aP) 
av s av S,N 

Express this quantity in terms of cP, c,,, a, and KT (do not eliminate cp). What is 
the relation of your result to the identity Ks/KT= cjcP (recall Problem 3.9-5)? 
7.4-3. Evaluate the change in temperature in an infinitesimal free expansion of a 
simple ideal gas (equation 7.51). Does this result also hold if the change in volume 
is comparable to the initial volume? Can you give a more general argument for a 
simple ideal gas, not based on equation 7.51? 
7.4-4. Show that equation 7.46 can be written as 

Q = V1 [P,µ] - U,[P,µ] 

so that U[P, µ] can be interpreted as a "potential for heat at constant T and N." 
7.4-5. A 1 % decrease in volume of a system is carried out adiabatically. Find the 
change in the chemical potential in terms of cP, a, and KT (and the state 
functions P, T, u, v, s, etc). 
7.4-6. Two moles of an imperfect gas occupy a volume of 1 liter and are at a 
temperature of 100 K and a pressure of 2 MPa. The gas is allowed to expand 
freely into an additional volume, initially evacuated, of 10 cm3• Find the change 
in enthalpy. 

At the initial conditions cP = 0.8 J/mole · K, KT= 3 X 106 Pa- 1, and a = 
0.002 K- 1. 

Answer: 

AH= Av= 15 J [
p -(cP - Pva) l 
( cpKT - Tva 2) 

7.4-7. Show that (ac,,jav)r= T(a 2P/aT 2)v and evaluate this quantity for a 
system obeying the van der Waals equation of state. 
7.4-8. Show that ( :~n T = - Tv [ a 2 + ( :; ) J 
Evaluate this quantity for a system obeying the equation of state 

P( v + : 2 ) = RT 



Problems 197 

7.4-9. One mole of the system of Problem 7.4-8 is expanded isothermally from an 
initial pressure P0 to a final pressure P1. Calculate the heat flux to the system in 
this process. 

Answer: 

Q= -RT1n(;,)-2A(P 1 -P,)/T 2 

7.4-10. A system obeys the van der Waals equation of state. One mole of this 
system is expanded isothermally at temperature T from an initial volume v0 to a 
final volume v1. Find the heat transfer to the system in this expansion. 
7.4-11. Two moles of Oz are initially at a pressure of 105 Pa and a temperature of 
0°C. An adiabatic compression is carried out to a final temperature of 300°C. 
Find the final pressure by integration of equation 7.39. Assume that Oz is a 
simple ideal gas with a molar heat capacity c P which can be represented by 

cp = 26.20 + 11.49 X 10- 3T - 3.223 X 10- 6Tz 

where cP is in J/mole and Tis in kelvins. 

Answer: 
P1 "' 15 X 105 Pa 

7.4-12. A ball bearing of mass 10 g just fits in a vertical glass tube of cross-sec-
tional area 2 cmz. The bottom of the tube is connected to a vessel of volume 5 
liters, filled with oxygen at a temperature of 30°C. The top of the tube is open to 
the atmosphere, which is at a pressure of 105 Pa and a temperature of 30°C. 
What is the period of vertical oscillation of the ball? Assume that the compres-
sions and expansions of the oxygen are slow enough to be essentially quasi-static 
but fast enough to be adiabatic. Assume that 0 2 is a simple ideal gas with a molar 
heat capacity as given in Problem 7 .4-11. 
7.4-13. Calculate the change in the molar internal energy in a throttling process 
in which the pressure change is dP, expressing the result in terms of standard 
parameters. 
7.4-14. Assuming that a gas undergoes a free expansion and that the temperature 
is found to change by dT, calculate the difference dP between the mitial and final 
pressure. 
7.4-15. One mole of an ideal van der Waals fluid is contained in a vessel of 
volume V, at temperature T,. A valve is opened, permitting the fluid to expand 
into an initially evacuated vessel, so that the final volume is ~- The walls of the 
vessels are adiabatic. Find the final temperature 7t. 

Evaluate your result for V, = 2 x 10- 3 m3, = 5 x 10 3 m3, N = 1, T, = 300 
K, and the van der Waals constants are those of argon (Table 3.1). What was the 
initial pressure of the gas? 



198 Maxwell Re/auons 

7.4-16. Assuming the expansion of the ideal van der Waals fluid of Problem 
7.4-15 to be carried out quasi-statically and adiabatically, again find the final 
temperature T1. 

Evaluate your result with the numerical data specified in Problem 7.4-15. 
7.4-17. It is observed that an adiabatic decrease in molar volume of 1 % produces 
a particular change in the chemical potential µ. What percentage change in molar 
volume, carried out isothermally, produces the same change in µ? 
7.4-18. A cylinder is fitted with a piston, and the cylinder contains helium gas. 
The sides of the cylinder are adiabatic, impermeable, and rigid, but the bottom of 
the cylinder is thermally conductive, permeable to helium, and rigid. Through this 
permeable wall the system is in contact with a reservoir of constant T and µHe 

(the chemical potential of He). Calculate the compressibility of the system 
[-(1/V)(dV/dP)] in terms of the properties of helium (cp, v, a, Kr, etc.) and 
thereby demonstrate that this compressibility diverges. Discuss the physical 
reason for this divergence. 
7.4-19. The cylinder in Problem 7.4-18 is initially filled with -lo mole of Ne. 
Assume both He and Ne to be monatomic ideal gases. The bottom of the cylinder 
is again permeable to He, but not to Ne. Calculate the pressure in the cylmder 
and the compressibility ( -1/V)( dV /dP) as functions of T, V, and µHe· 

Hint: Recall Problems 5.3-1, 5.3-10, and 6.2-3. 
7.4-20. A system is composed of I mole of a particular substance. In the P-v 
plane two states (A and B) lie on the locus Pv2 = constant, so that PAvJ = PBv1. 
The following properties of the system have been measured along this locus: 
cP = Cv2, a= D/v, and Kr= Ev, where C, D, and E are constants. Calculate 
the temperature TB in terms of TA, PA, vA, vB, and the constants C, D, and E. 

Answer: 
TB= TA+ (vB - vA)/D + 2EPAvJD- 1ln(vBfva) 

7.4-21. A system is composed of I mole of a particular substance. Two thermody-
namic states, designated as A and B, lie on the locus Pv = constant. The 
following properties of the system have been measured along this locus; cP = Cv, 
a = D /v 2, and Kr= Ev, where C, D, and E are constants. Calculate the 
difference in molar energies (uB - uA) in terms of TA, PA> vA, vB, and the con-
stants C, D, and E. 
7.4-22. The constant-volume heat capacity of a particular simple system is 

( A = constant) 

In addition the equation of state is known to be of the form 

(v - v0 )P = B(T) 

where B(T) is an unspecified function of T. Evaluate the permissible functional 
form of B(T). 
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In terms of the undetermined constants appearing in your functional represen-
tation of B(T), evaluate o:, cP, and Kr as functions of T and v. 
Hint: Examine the derivative a2s/aTav. 

Answer: 
cP = AT 3 + (T 3 /DT + £), where D and E are constants. 

7.4-23. A system is expanded along a straight line in the P-v plane, from the 
initial state (P0 , v0 ) to the final state (P1, v1 ). Calculate the heat transfer per mole 
to the system in this process. It is to be assumed that o:, Kr, and cP are known 
only along the isochore v = v0 and the isobar P = P1; in fact it is sufficient to 
specify that the quantity (cvKr/a) has the value AP on the isochore v = v0, and 
the quantity (cp/va) has the value Bv on the isobar P = P1, where A and Bare 
known constants. That is 

(for 1.: = v0 ) 

(for P = P1) 

Answer: 
Q = fA(Pj - Pl)+ fB(v} - vJ) + !(P 0 - P1)(v1 - v0 ) 

7.4-24. A nonideal gas undergoes a throttling process (i.e., a Joule-Thomson 
expansion) from an initial pressure P0 to a final pressure P1. The initial tempera-
ture is T0 and the initial molar volume is v0 • Calculate the final temperature 7t if 
it is given that 

and 

Kr= A2 along the T = T0 isotherm ( A > 0) 
V 

a = o:0 along the T = T0 isotherm 

cP = c~ along the P = P1 isobar 
What is the condition on T0 in order that the temperature be lowered by the 
expansion? 

7-5 GENERALIZATIONS: MAGNETIC SYSTEMS 

For systems other than simple systems there exists a complete paralle-
lism to the formalism of Legendre transformation, of Maxwell relations, 
and of reduction of derivatives by the mnemonic square. 

The fundamental equation of a magnetic system is of the form (recall 
Section 3.8 and Appendix B) 

U = U(S, V, I, N) (7.52) 
Legendre transformations with respect to S, V, and N simply retain the 
magnetic moment I as a parameter. Thus the enthalpy is a function of S, 
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P, I, and N. 

H= U[P) = U+PV=H(S,P,l,N) (7.53) 
An analogous transformation can be made with respect to the magnetic 
coordinate 

(7.54) 

and this potential is a function of S, V, Be, and N. The condition of 
equilibrium for a system at constant external field is that this potential be 
minimum. 

Various other potentials result from multiple Legendre transformations, 
as depicted in the mnemonic squares of Fig. 7.3. Maxwell relations and 
the relationships between potentials can be read from these squares in a 
completely straightforward fashion. 

( av) ( aBe) a1 s.P = aP s., 
U[P, B,] 

(!;}s,B, = -(:;L.P 
U[P] 

U[T, B,] 
V .-------~ B, 

( av) ( aBe) TI T,P = aP T,1 
U[T] 

( :; t.B, = -( :;L.P 
U[T. P,B,] 

U[T] 

(as) ( a Be) TI V,T = - ar V.l 
V U[T,B,] 

( aT) ( aBe) a1 v.s = as v., 

FIGURE 73 
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The "magnetic enthalpy" U[P, Be]= U + PV - Bel is an interesting 
and useful potential. It is minimum for systems maintained at constant 
pressure and constant external field. Furthermore, as in equation 6.29 for 
the enthalpy, dU[P, Be]= T dS = dQ at constant P, Be, and N. Thus 
the magnetic enthalpy U[ P, Be] acts as a "potential for heat" for systems 
maintained at constant pressure and magnetic field. 

Example 
A particular material obeys the fundamental equation of the "paramagnetic 
model" (equation 3.66), with T0 = 200 K and If/2R = 10 Tesla2 K/m2J. Two 
moles of this material are maintained at constant pressure in an external field of 
B, = 0.2 Tesla (or 2000 gauss), and the system is heated from an imtial tempera-
ture of 5 K to a final temperature of 10 K. What is the heat input to the system? 

Solution 
The heat input is the change in the "magnetic enthalpy" U[P, Be]. For a system 
in which the fundamental relation is independent of volume, P = au/ av= o. so 
that U[P, Be] degenerates to U - Bel= U[Bel· Furthermore for the para-
magnetic model (equat10n 3.66), U = NRT and I = (N1i12RT)B_, so that 
U[P,B,] = U[B,J = NRT - (Nll12RT)B;. Thus 

Q = N [RAT - ;1 B;A( ~)] 
= 2[8314 X 5 + 10 X 0.04 X 0.l)J = 83.lSJ 

(Note that the magnetic contribution, arising from the second term, is small 
compared to the nonmagnetic first-term contribution; in reality the nonmagnetic 
contribution to the heat capacity of real solids falls rapidly at low temperatures 
and would be comparably small. Recall Problem 3.9-6.) 

PROBLEMS 

17.5-1. Calculate the "magnetic Gibbs potential" U[T, B,] for the paramagnetic 
model of equation 3.66. Corroborate that the derivative of this potential with 
respect to B, at C(ln<;tant T has its proper value. 
7.5-2. Repeat Problem 7.5-1 for the system with the fundamental equation given 
in Problem 3.8-2. 

Answer: 

U[T, Bel= 1NAB; - 1 NRT1n(k 8 T/21o) 
µo 

7.5-3. Calculate ( a I/ aT) s for the paramagnetic model of equation 3.66. Also 
calculate (as;aBe),. What 1s the relationship between these derivauves, as read 
from the mnemonic square? 
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7.5-4. Show that 

and 

11-ir(a1) cB, - c, = -2- ar 
Xr B, 

CB, Xr 
C, = Xs 

where CB and C1 are heat capacities and Xr and Xs are susceptibilities: 
Xr = 11-o(fH/aBeh· 


