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density= 1 g/cm 3 ) are mixed together. What are the mole numbers and mole 
fractions of the three components of the system? 

Answer: 
mole fractions= 0.17, 0.26, 0.57 

1.3-4. A 0.01 kg sample is composed of 50 molecular percent H2, 30 molecular 
percent HD (hydrogen deuteride), and 20 molecular percent D2• What additional 
mass of D2 must be added if the mole fraction of D2 in the final mixture 1s to be 
0.3? 
1.3-5. A solution of sugar (C12H 220u) in water is 20% sugar by weight. What is 
the mole fraction of sugar in the solution? 
1.3-6. An aqueous solution of an unidentified solute has a total mass of 0.1029 
kg. The mole fraction of the solute is 0.1. The solution is diluted with 0.036 kg of 
water, after which the mole fraction of the solute is 0.07. What would be a 
reasonable guess as to the chemical identity of the solute? 
1.3-7. One tenth of a kg of an aqueous solution of HCI is poured into 0.2 kg of an 
aqueous solution of NaOH. The mole fraction of the HCl solution was 0.1, 
whereas that of the NaOH solution was 0.25. What are the mole fractions of each 
of the components in the solution after the chemical reaction has come to 
completion? 

Answer: 
XH20 = NH20/N = 0.84 

1-4 THE INTERNAL ENERGY 

The development of the principle of conservation of energy has been 
one of the most significant achievements in the evolution of physics. The 
present form of the principle was not discovered in one magnificent stroke 
of insight but was slowly and laboriously developed over two and a half 
centuries. The first recognition of a conservation principle, by Leibniz in 
1693, referred or,ly to the sum of the kinetic energy ( t mv2 ) and the 
potential energy (mgh) of a simple mechanical mass point in the terrestrial 
gravitational field. As additional types of systems were considered the 
established form of the conservation principle repeatedly failed, but in 
each case it was found possible to revive it by the addition of a new 
mathematical term-a "new kind of energy." Thus consideration of 
charged systems necessitated the addition of the Coulomb interaction 
energy ( Q1Qifr) and eventually of the energy of the electromagnetic field. 
In 1905 Einstein extended the principle to the relativistic region, adding 
such terms as the relativistic rest-mass energy. In the 1930s Enrico Fermi 
postulated the exidPn<'P nf n ~~••• ---£"-I . 
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purpose of retaining the energy conservation principle in nuclear reac-
tions. The principle of energy conservation is now seen as a reflection of 
the (presumed) fact that the fundamental laws of physics are the same 
today as they were eons ago, or as they will be in the remote future; the 
laws of physics are unaltered by a shift in the scale of time ( t - t + 
constant). Of this basis for energy conservation we shall have more to say 
in Chapter 21. Now we simply note that the energy conservation principle 
is one of the most fundamental, general, and significant principles of 
physical theory. 

Viewing a macroscopic system as an agglomerate of an enormous 
number of electrons and nuclei, interacting with complex but definite 
forces to which the energy conservation principle applies, we conclude 
that macroscopic systems have definite and precise energies, subject to a 
definite conservation principle. That is, we now accept the existence of a 
well-defined energy of a thermodynamic system as a macroscopic mani-
festation of a conservation law, highly developed, tested to an extreme 
precision, and apparently of complete generality at the atomic level. 

The foregoing justification of the existence of a thermodynamic energy 
function is quite different from the historical thermodynamic method. 
Because thermodynamics was developed largely before the atomic hy-
pothesis was accepted, the existence of a conservative macroscopic energy 
function had to be demonstrated by purely macroscopic means. A signifi-
cant step in that direction was taken by Count Rumford in 1798 as he 
observed certain thermal effects associated with the boring of brass 
cannons. Sir Humphry Davy, Sadi Carnot, Robert Mayer, and, finally 
(between 1840 and 1850), James Joule carried Rumford's initial efforts to 
their logical fruition. The history of the concept of heat as a form of 
energy transfer is unsurpassed as a case study in the tortuous development 
of scientific theory, as an illustration of the almost insuperable inertia 
presented by accepted physical doctrine, and as a superb tale of human 
ingenuity applied to a subtle and abstract problem. The interested reader 
is referred to The Early Development of the Concepts of Temperature and 
Heat by D. Roller (Harvard University Press, 1950) or to any standard 
work on the history of physics. 

Although we shall not have recourse explicitly to the experiments of 
Rumford and Joule in order to justify our postulate of the existence of an 
energy function, we make reference to them in Section 1.7 in our discus-
sion of the measurability of the thermodynamic energy. 

Only differences of energy, rather than absolute values of the energy, 
have physical significance, either at the atomic level or in macroscopic 
systems. It is conventional therefore to adopt some particular state of a 
system as a fiducial state, the energy of which is arbitrarily taken as zero. 
The energy of a system in any other state, relative to the energy of the 
system in the fiducial state, is then called the thermodynamic internal 
energy of the system in that state and is denoted by the symbol U. Like 



Thermodynanuc Equilibrium 13 

the volume and the mole numbers, the internal energy is an extensive 
parameter. 

1-5 THERMODYNAMIC EQUILIBRIUM 

Macroscopic systems often exhibit some "memory" of their recent 
history. A stirred cup of tea continues to swirl within the cup. Cold-worked 
steel maintains an enhanced hardness imparted by its mechanical treat-
ment. But memory eventually fades. Turbulences damp out, internal 
strains yield to plastic flow, concentration inhomogeneities diffuse to 
uniformity. Systems tend to subside to very simple states, independent of 
their specific history. 

In some cases the evolution toward simplicity is rapid; in other cases it 
can proceed with glacial slowness. But in all systems there is a tendency to 
evolve toward states in which the properties are determined by intrinsic 
factors and not by previously applied external influences. Such simple 
terminal states are, by definition, time independent. They are called equi-
librium states. 

Thermodynamics seeks to describe these simple, static "equilibrium" 
states to which systems eventually evolve. 

To convert this statement to a formal and precise postulate we first 
recognize that an appropriate criterion of simplicity is the possibility of 
description in terms of a small number of variables. It therefore seems 
plausible to adopt the following postulate, suggested by experimental 
observation and formal simplicity, and to be verified ultimately by the 
success of the derived theory: 

Postulate I. There exist particular states ( called equilibrium states) of 
simple systems that, macroscopically, are characterized completely by the 
internal energy U, the volume V, and the mole numbers N1, N2 , •.. , N, of the 
chemical components. 

As we expand the generality of the systems to be considered, eventually 
permitting more complicated mechanical and electrical properties, the 
number of parameters required to characterize an equilibrium state in-
creases to include, for example, the electric dipole moment and certain 
elastic strain parameters. These new variables play roles in the formalism 
which are completely analogous to the role of the volume V for a simple 
system. 

A persistent problem of the experimentalist is to determine somehow 
whether a given system actually is in an equilibrium state, to which 
thermodynamic analysis can be applied. He or she can, of course, observe 
whether the system is static and quiescent. But quiescence is not sufficient. 
As the state is assumed to be characterized completely by the extensive 
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parameters, U, V, N1, N2 , ••• , Nr, it follows that the properties of the 
system must be independent of the past history. This is hardly an 
operational prescription for the recognition of an equilibrium state, but in 
certain cases this independence of the past history is obviously not 
satisfied, and these cases give some insight into the significance of equi-
librium. Thus two pieces of chemically identical commercial steel may 
have very different properties imparted by cold-working, heat treatment, 
quenching, and annealing in the manufacturing process. Such systems are 
clearly not in equilibrium. Similarly, the physical characteristics of glass 
depend upon the cooling rate and other details of its manufacture; hence 
glass is not in equilibrium. 

If a system that is not in equilibrium is analyzed on the basis of a 
thermodynamic formalism predicated on the supposition of equilibrium, 
inconsistencies appear in the formalism and predicted results are at 
variance with experimental observations. This failure of the theory is used 
by the experimentalist as an a posteriori criterion for the detection of 
nonequilibrium states. 

In those cases in which an unexpected inconsistency arises in the 
thermodynamic formalism a more incisive quantum statistical theory 
usually provides valid reasons for the failure of the system to attain 
equilibrium. The occasional theoretical discrepancies that arise are there-
fore of great heuristic value in that they call attention to some unsus-
pected complication in the molecular mechanisms of the system. Such 
circumstances led to the discovery of ortho- and parahydrogen, 1 and to 
the understanding of the molecular mechanism of conversion between the 
two forms. 

From the atomic point qf view, the macroscopic equilibrium state is 
associated with incessant and rapid transitions among all the atomic states 
consistent with the given boundary conditions. If the transition mecha-
nism among the atomic states is sufficiently effective, the system passes 
rapidly through all representative atomic states in the course of a macro-
scopic observation; such a system is in equilibrium. However, under 
certain unique conditions, the mechanism of atomic transition may be 
ineffective and the system may be trapped in a small subset of atypical 
atomic states. Or even if the system is not completely trapped the rate of 
transition may be so slow that a macroscopic measurement does not yield 
a proper average over all possible atomic states. In these cases the system 
is not in equilibrium. It is readily apparent that such situations are most 
likely to occur in solid rather than in fluid systems, for the comparatively 
high atomic mobility in fluid systems and the random nature of the 

1 If the two nuclei in a H 2 molecule have parallel angular momentum, the molecule is called 
ortho-H 2 ; if antiparallel, para-H 2 . The ratio of ortho-H 2 to para-H 2 in a gaseous H 2 system should 
have a definite value in equilibnum, but this ratio may not be obtained under certain conditions The 
resultant failure of H 2 to satisfy certain thermodynamic equations motivated the investigations of the 
ortho- and para-forms of H 2 . 
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interatomic collisions militate strongly against any restrictions of the 
atomic transition probabilities. 

In actuality, few systems are in absolute and true equilibrium. In 
absolute equilibrium all radioactive materials would have decayed com-
pletely and nuclear reactions would have transmuted all nuclei to the most 
stable of isotopes. Such processes, which would take cosmic times to 
complete, generally can be ignored. A system that has completed the 
relevant processes of spontaneous evolution, and that can be described by 
a reasonably small number of parameters, can be considered to be in 
metastable equilibrium. Such a limited equilibrium is sufficient for the 
application of thermodynamics. 

In practice the criterion for equilibrium is circular. Operationally, a 
system is in an equilibrium state if its properties are consistently described by 
thermodynamic theory! 

It is important to reflect upon the fact that the circular character of 
thermodynamics is not fundamentally different from that of mechanics. A 
particle of known mass in a known gravitational field might be expected 
to move in a specific trajectory; if it does not do so we do not reject the 
theory of mechanics, but we simply conclude that some additional force 
acts on the particle. Thus the existence of an electrical charge on the 
particle, and the associated relevance of an electrical force, cannot be 
known a priori. It is inferred only by circular reasoning, in that dynamical 
predictions are incorrect unless the electric contribution to the force is 
included. Our model of a mechanical system (including the assignment of 
its mass, moment of inertia, charge, dipole moment, etc.) is "correct" if it 
yields successful predictions. 

1-6 WALLS AND CONSTRAINTS 

A description of a thermodynamic system requires the specification of 
the "walls" that separate it from the surroundings and that provide its 
boundary conditions. It is by means of manipulations of the walls that the 
extensive parameters of the system are altered and processes are initiated. 

The processes arising by manipulations of the walls generally are 
associated with a redistribution of some quantity among various systems 
or among various portions of a single system. A formal classification of 
thermodynamic walls accordingly can be based on the property of the 
walls in permitting or preventing such redistributions. As a particular 
illustration, consider two systems separated by an internal piston within a 
closed, rigid cylinder. If the position of the piston is rigidly fixed the 
"wall" prevents the redistribution of volume between the two systems, but 
if the piston is left free such a redistribution is permitted. The cylinder 
and the rigidly fixed piston may be said to constitute a wall restrictive 
with respect to the volume, whereas the cylinder and the movable piston 
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may be said to constitute a wall nonrestrictive with respect to the volume. 
In general, a wall that constrains an extensive parameter of a system to 
have a definite and particular value is said to be restrictive with respect to 
that parameter, whereas a wall that permits the parameter to change freely 
is said to be nonrestrictive with respect to that parameter. 

A wall that is impermeable to a particular chemical component is 
restrictive with respect to the corresponding mole number; whereas a 
permeable membrane is nonrestrictive with respect to the mole number. 
Semipermeable membranes are restrictive with respect to certain mole 
numbers and nonrestrictive with respect to others. A wall with holes in it 
is nonrestrictive with respect to all mole numbers. 

The existence of walls that are restrictive with respect to the energy is 
associated with the larger problem of measurability of the energy, to 
which we now turn our attention. 

1-7 MEASURABILITY OF THE ENERGY 

On the basis of atomic considerations, we have been led to accept the 
existence of a macroscopic conservative energy function. In order that this 
energy function may be meaningful in a practical sense, however, we must 
convince ourselves that it is macroscopically controllable and measurable. 
We shall now show that practical methods of measurement of the energy 
do exist, and in doing so we shall also be led to a quantitative operational 
definition of heat. 

An essential prerequisite for the measurability of the energy is the 
existence of walls that do not permit the transfer of energy in the form of 
heat. We briefly examine a simple experimental situation that suggests 
that such walls do indeed exist. 

Consider a system of ice and water enclosed in a container. We find 
that the ice can be caused to melt rapidly by stirring the system vigor-
ously. By stirring the system we are clearly transferring energy to it 
mechanically, so that we infer that the melting of the ice is associated with 
an input of energy to the system. If we now observe the system on a 
summer day, we find that the ice spontaneously melts despite the fact that 
no work is done on the system. It therefore seems plausible that energy is 
being transferred to the system in the form of heat. We further observe 
that the rate of melting of the ice is progressively decreased by changing 
the wall surrounding the system from thin metal sheet, to thick glass, and 
thence to a Dewar wall ( consisting of two silvered glass sheets separated 
by an evacuated interspace). This observation strongly suggests that the 
metal, glass, and Dewar walls are progressively less permeable to the flow 
of heat. The ingenuity of experimentalists has produced walls that are able 
to reduce the melting rate of the ice to a negligible value, and such walls 
are correspondingly excellent approximations to the limiting idealization 
of a wall that is truly impermeable to the flow of heat. 
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It is conventional to refer to a wall that is impermeable to the flow of 
heat as adiabatic; whereas a wall that permits the flow of heat is termed 
diathermal. If a wall allows the flux of neither work nor heat, it is 
restrictive with respect to the energy. A system enclosed by a wall that is 
restrictive with respect to the energy, volume, and all the mole numbers 
is said to be closed. 2 

The existence of these several types of walls resolves the first of our 
concerns with the thermodynamic energy. That is, these walls demonstrate 
that the energy is macroscopically controllable. It can be trapped by 
restrictive walls and manipulated by diathermal walls. If the energy of a 
system is measured today, and if the system is enclosed by a wall 
restrictive with respect to the energy, we can be certain of the energy of 
the system tomorrow. Without such a wall the concept of a macroscopic 
thermodynamic energy would be purely academic. 

We can now proceed to our second concern- that of measurability of 
the energy. More accurately, we are concerned with the measurability of 
energy differences, which alone have physical significance. Again we 
invoke the existence of adiabatic walls, and we note that for a simple 
system enclosed by an impermeable adiabatic wall the only type of 
permissible energy transfer is in the form of work. The theory of me-
chanics provides us with quantitative formulas for its measurement. If the 
work is done by compression, displacing a piston in a cylinder, the work is 
the product of force times displacement; or if the work is done by stirring, 
it is the product of the torque times the angular rotation of the stirrer 
shaft. In either case, the work is well defined and measurable by the 
theory of mechanics. We conclude that we are able to measure the energy 
difference of two states provided that one state can be reached from the 
other by some mechanical process while the system is enclosed by an 
adiabatic impermeable wall. 

The entire matter of controllability and measurability of the energy can 
be succinctly stated as follows: There exist walls, called adiabatic, with the 
property that the work done in taking an adiabatically enclosed system 
between two given states is determined entirely by the states, independent of 
all external conditions. The work done is the difference in the internal energy 
of the two states. 

As a specific example suppose we are given an equilibrium system 
composed of ice and water enclosed in a rigid adiabatic impermeable wall. 
Through a small hole in this wall we pass a thin shaft carrying a propellor 
blade at the inner end and a crank handle at the outer end. By turning the 
crank handle we can do work on the system. The work done is equal to 
the angular rotation of the shaft multiplied by the viscous torque. After 
turning the shaft for a definite time the system is allowed to come to a 
new equilibrium state in which some definite amount of the ice is observed 

2 Tlus definit10n of closure differs from a usage common in chemistry, in which closure 1mphes only 
a wall restrictive with respect to the transfer of matter 
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to have been melted. The difference in energy of the final and initial states 
is equal to the work that we have done in turning the crank. 

We now inquire about the possibility of starting with some arbitrary 
given state of a system, of enclosing the system in an adiabatic imperme-
able wall, and of then being able to contrive some mechanical process that 
will take the system to another arbitrarily specified state. To determine the 
existence of such processes, we must have recourse to experimental 
observation, and it is here that the great classical experiments of Joule are 
relevant. His work can be interpreted as demonstrating that for a system 
enclosed by an adiabatic impermeable wall any two equilibrium states with 
the same set of mole numbers N1, N2 , ••• , N, can be joined by some possible 
mechanical process. Joule discovered that if two states (say A and B) are 
specified it may not be possible to find a mechanical process ( consistent 
with an adiabatic impermeable wall) to take the system from A to B but 
that it is always possible to find either a process to take the system from 
A to B or a process to take the system from B to A. That is, for any states 
A and B with equal mole numbers, either the adiabatic mechanical 
process A - B or B -+ A exists. For our purposes either of these processes 
is satisfactory. Experiment thus shows that the methods of mechanics 
permit us to measure the energy difference of any two states with equal mole 
numbers. 

Joule's observation that only one of the processes A - B or B -+ A 
may exist is of profound significance. This asymmetry of two given states 
is associated with the concept of irreversibility, with which we shall 
subsequently be much concerned. 

The only remaining limitation to the measurability of the energy 
difference of any two states is the requirement that the states must have 
equal mole numbers. This restriction is easily eliminated by the following 
observation. Consider two simple subsystems separated by an imperme-
able wall and assume that the energy of each subsystem is known (relative 
to appropriate fiducial states, of course). If the impermeable wall is 
removed, the subsystems will intermix, but the total energy of the com-
posite system will remain constant. Therefore the energy of the final 
mixed system is known to be the sum of the energies of the original 
subsystems. This technique enables us to relate the energies of states with 
different mole numbers. 

In summary, we have seen that by employing adiabatic walls and by 
measuring only mechanical work, the energy of any thermodynamic system, 
relative to an appropriate reference state, can be measured. 

1-8 QUANTITATIVE DEFINITION OF HEAT-UNITS 

The fact that the energy difference of any two equilibrium states is 
measurable provides us directly with a quantitative definition of the heat: 
The heat flux to a system in any process ( at constant mole numbers) is 
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simply the difference in internal energy between the final and initial states, 
diminished by the work done in that process. 

Consider some specified process that takes a system from the initial 
state A to the final state B. We wish to know the amount of energy 
transferred to the system in the form of work and the amount transferred 
in the form of heat in that particular process. The work is easily measured 
by the method of mechanics. Furthermore, the total energy difference u - is measurable by the procedures discussed in Section 1.7. Sub-
tr!cting the work from the total energy difference gives us the heat flux in 
the specified process. 

It should be noted that the amount of work associated with different 
processes may be different, even though each of the processes initiates in 
the same state A and each terminates in the same state B. Similarly, the 
heat flux may be different for each of the processes. But the sum of the 
work and heat fluxes is just the total energy difference U8 - and is 
the same for each of the processes. In referring to the total energy flux we 
therefore need specify only the initial and terminal states, but in referring 
to heat or work fluxes we must specify in detail the process considered. 

Restricting our attention to thermodynamic simple systems, the quasi-
static work is associated with a change in volume and is given quantita-
tively by 

dWM= -PdV (1.1) 

where P is the pressure. In recalling this equation from mechanics, we 
stress that the equation applies only to quasi-static processes. A precise 
definition of quasi-static processes will be given in Section 4.2, but now we 
merely indicate the essential qualitative idea of such processes. Let us 
suppose that we are discussing, as a particular system, a gas enclosed in a 
cylinder fitted with a moving piston. If the piston is pushed in very 
rapidly, the gas immediately behind the piston acquires kinetic energy and 
is set into turbulent motion and the pressure is not well defined. In such a 
case the work done on the system is not quasi-static and is not given by 
equation 1.1. If, however, the piston is pushed in at a vanishingly slow rate 
(quasi-statically), the system is at every moment in a quiescent equilibrium 
state, and equation 1.1 then applies. The "infinite slowness" of the process 
is, roughly, the essential feature of a quasi-static process. 

A second noteworthy feature of equation 1.1 is the sign convention. The 
work is taken to be positive if it increases the energy of the system. If the 
volume of the system is decreased, work is done on the system, increasing 
its energy; hence the negative sign in equation 1.1. 

With the quantitative expression dW M = - P dV for the quasi-static 
work, we can now give a quantitative expression for the heat flux. In an 
infinitesimal quasi-static process at constant mole numbers the quasi-static 
heat dQ is defined by the equation 

dQ = dU - dW M at constant mole numbers (1.2) 
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or 
dQ = dU + P dV at constant mole numbers ( 1.3) 

It will be noted that we use the terms heat and heat flux interchange-
ably. Heat, like work, is only a form of energy transfer. Once energy is 
transferred to a system, either as heat or as work, it is indistinguishable 
from energy that might have been transferred differently. Thus, although 
dQ and dW M add together to give dU, the energy U of a state cannot be 
considered as the sum of "work" and "heat" components. To avoid this 
implication we put a stroke through the symbol d: infinitesimals such as 
dW M and dQ are called imperfect differentials. The integrals of dW M and 
dQ for a particular process are the work and heat fluxes in that process; 
the sum is the energy difference !:::.U, which alone is independent of the 
process. 

The concepts of heat, work, and energy may possibly be clarified in 
terms of a simple analogy. A certain farmer owns a pond, fed by one 
stream and drained by another. The pond also receives water from an 
occasional rainfall and loses it by evaporation, which we shall consider as 
"negative rain." In this analogy the pond is our system, the water within it 
is the internal energy, water transferred by the streams is work, and water 
transferred as rain is heat. . 

The first thing to be noted is that no examination of the pond at any 
time can indicate how much of the water within it came by way of the 
stream and how much came by way of rain. The term rain refers only to a 
method of water transfer. 

Let us suppose that the owner of the pond wishes to measure the 
amount of water in the pond. He can purchase flow meters to be inserted 
in the streams, and with these flow meters he can measure the amount of 
stream water entering and leaving the pond. But he cannot purchase a rain 
meter. However, he can throw a tarpaulin over the pond, enclosing the 
pond in a wall impermeable to rain (an adiabatic wall). The pond owner 
consequently puts a vertical pole into the pond, covers the pond with his 
tarpaulin, and inserts his flow meters into the streams. By damming one 
stream and then the other, he varies the level in the pond at will, and by 
consulting his flow meters he is able to calibrate the pond level, as read on 
his vertical stick, with total water content ( U). Thus, by carrying out 
processes on the system enclosed by an adiabatic wall, he is able to 
measure the total water content of any state of his pond. 

Our obliging pond owner now removes his tarpaulin to permit rain as 
well as stream water to enter and leave the pond. He is then asked to 
evaluate the amount of rain entering his pond during a particular day. He 
proceeds simply; he reads the difference in water content from his vertical 
stick, and from this he deducts the total flux of stream water as registered 
by his flow meters. The difference is a quantitative measure of the rain. 
The strict analogy of each of these procedures with its thermodynamic 
counterpart is evident. 
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Since work and heat refer to particular modes of energy transfer, each is 
measured in energy units. In the cgs system the unit of energy, and hence 
of work and heat, is the erg. In the mks system the unit of energy is the 
joule, or 10 7 ergs. 

A practical unit of energy is the calorie, 3 or 4.1858 J. Historically, the 
calorie was introduced for the measurement of heat flux before the 
relationship of heat and work was clear, and the prejudice toward the use 
of the calorie for heat and of the joule for work still persists. Nevertheless, 
the calorie and the joule are simply alternative units of energy, either of 
which is acceptable whether the energy flux is work, heat, or some 
combination of both. 

Other common units of energy are the British thermal unit (Btu), the 
liter-atmosphere, the foot-pound and the watt-hour. Conversion factors 
among energy units are given inside the back cover of this book. 

Example 1 
A particular gas is enclosed in a cylinder with a moveable piston. It is observed 
that if the walls are adiabatic, a quasi-static increase in volume results in a 
decrease in pressure according to the equation 

P 3V 5 = constant (for Q = 0) 

a) Find the quasi-static work done on the system and the net heat transfer to the 
system in each of the three processes (ADB, ACB, and the direct linear process 
AB) as shown in the figure. 

8 X 10-3 

In the process ADB the gas is heated at constant pressure (P = 105 Pa) until 
its volume increases from its initial value of 10- 3 m3 to its final value of 8 x to- 3 

m3• The gas is then cooled at constant volume until its pressure decreases to 
105 /32 Pa. The other processes (ACB and AB) can be similarly interpreted, 
according to the figure. 

1 Nutritionists refer to a kilocalorie as a "Calone" -presumably to spare calorie counters the 
trauma of large numbers To compound the confusion the initial capital C is often dropped, so that a 
k.Jlocalorie becomes a "calorie"! 
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b) A small paddle is installed inside the system and is driven by an external 
motor (by means of a magnetic couplmg through the cylinder wall). The motor 
exerts a torque, driving, the paddle at an angular velocity w, and the pressure of 
the gas (at constant volume) is observed to mcrease at a rate given by 

dP 2 w - = - - X torque 
dt 3 V 

Show that the energy difference of any two states of equal volumes can be 
determined by this process. In particular, evaluate Uc - VA and VD - U8. 

Explain why this process can proceed only in one direction (vertically upward 
rather than downward in the P- V plot). 
c) Show that any two states (any two points in the P-V plane) can be connected 
by a combination of the processes in (a) and ( b ). In particular, evaluate U D - VA" 
d) Calculate the work WAD m the process A -+ D. Calculate the heat transfer 
QAD· Repeat for D -+ B, and for C-+ A. Are these results consistent with those 
of (a)? 

The reader should attempt to solve this problem before reading the 
following solution! 
Solution 
a) Given the equation of the "adiabat" (for which Q = 0 and AU= W), we find 

i p V 5 /3 ( V - 2/3 _ V 2;3 ) 2 A A B A 

3 
= 2(25 - 100} = -112.5 J 

Now consider process ADB: 

WADB = - f PdV= -10 5 x(8 x 10- 3 -10- 3 ) = -700J 

But 

QADB = -112.5 + 700 = 587.5 J 

Note that we are able to calculate QADB• but not QAD and QD8 separately, for we 
do not (yet) know VD - VA" 

Similarly we find WAc 8 = - 21.9 J and QAcB = -90.6 J. Also WA8 = - 360.9 
J and QA8 = 248.4 J. 
b) As the motor exerts a torque, and turns through an angle dB, it delivers an 
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energy 4 dU = torque X dO to the system. But dO = w dt, so that 
2 1 

dP = 3 V (torque) wdl 

or 

2 1 
= --du 

3 V 

3 dU = -VdP 
2 

This process is carried out at constant V and furthermore dU 0 (and conse-
quently dP 0). The condition dU 0 follows from dU = torque x dO, for the 
sign of the rotation dO is the same as the sign of the torque that induces that 
rotation. In particular 

3 3 ( 1 ) VA - Uc= 2 V(PA - Pc)= 2 x 10- 3 x 105 - 32 x 105 = 145.3 J 

and 

3 3 ( 1 ) U0 - Us= 2 V(P 0 - P8 ) = 2 X 8 X 10- 3 X 105 - 32 X 105 = 1162 5 J 

c) To connect any two points in the plane we draw an adiabat through one and 
an isochor (V = constant) through the other. These two curves intersect, thereby 
connecting the two states. Thus we have found (using the adiabatic process) that 
U8 - VA = -112.5 J and (using the irreversible stirrer process) that U0 - U8 = 
1162.5 J. Therefore Uv - VA = 1050 J. Equivalently, if we assign the value zero 
to UA then 

UA = 0, Us= -112.5 J, Uc= -145.3 J, Uv = 1050 J 

and similarly every state can be assigned a value of U. 
d) Now having U0 - UA and WAD we can calculate QAD· 

Uo - UA = U-:..o + QAD 
1050 = - 700 + QAD 

QAD = J750 J 
Also 

or 

- } )62.5 = 0 + QDB 

To check, we note that QAD + Q08 = 587.5 J, which is equal to QADB as found 
in (a). 

4 Note that the energy output of the motor is delivered to the system as energy that cannot be 
classified either as work or as heat-it is a non-quas1-sta11c transfer of energy. 
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PROBLEMS 

1.8-1. For the system considered in Example 1, calculate the energy of the state 
with P = 5 X 10 4 Pa and V = 8 X 10 - 3 m3• 

1.8-2. Calculate the heat transferred to the system considered in Example I in the 
process in which it is taken in a straight line (on the P-V diagram) from the state 
A to the state referred to in the preceding problem. 
1.8-3. For a particular gaseous system it has been determined that the energy is 
given by 

U = 2.5PV + constant 

The system is initially in the state P = 0.2 MPa (mega-Pascals), V = 0.01 m3; 
designated as point A in the figure. The system is taken through the cycle of three 
processes (A _,. B, B _,. C, and C-+ A) shown in the figure. Calculate Q and W 
for each of the three processes. Calculate Q and W for a process from A to B 
along the parabola P = 105 + 109 X (V - .02)2• 
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Answer: 
WBC = 7 X 103 J; QBC = -9.5 X 103 J 

1.8-4. For the system of Problem 1.8-3 find the equation of the adiabats in the 
P- V plane (i.e., find the form of the curves P = P( V) such that dQ = 0 along 
the curves). 

Answer: 
V 1P 5 = constant 
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l.8-5. The energy of a particular system, of one mole, is given by 

U= AP 2V 

where A is a positive constant of dimensions [P)- 1• Find the equation of the 
adiabats in the P-V plane. 
1.8-6. For a particular system it is found that if the volume is kept constant at the 
value V0 and the pressure is changed from P0 to an arbitrary pressure P', the heat 
transfer to the system is 

Q' = A(P' - P0 ) (A> 0) 

In addition it is known that the adiabats of the system are of the form 

pv-r = constant ( y a positive constant) 

Find the energy U( P, V) for an arbitrary point in the P- V plane, expressing 
U(P, V) in terms of P0 , V0 , A, U0 = U(P 0 , V0 ) and y (as.well as P and V). 

U - U0 = A(Pr., - P0) + (PV/(y - 1))(1 - r-,- 1) 

Answer: 
where r = V/V 0 

1.8-7. Two moles of a particular single-component system are found to have a 
dependence of internal energy U on pressure and volume given by 

U = APV 2 (for N = 2) 

Note that doubling the system doubles the volume, energy, and mole number, but 
leaves the pressure unaltered. Write the complete dependence of U on P, V, and 
N for arbitrary mole number. 

1-9 THE BASIC PROBLEM OF THERMODYNAMICS 

The preliminaries thus completed, we are prepared to formulate first the 
seminal problem of thermodynamics and then its solution. 

Surveying those preliminaries retrospectively, it is remarkable how far 
reaching and how potent have been the consequences of the mere choice 
of thermodynamic coordinates. Identifying the criteria for those coordi-
nates revealed the role of measurement. The distinction between the 
macroscopic coordinates and the incoherent atomic coordinates suggested 
the distinction between work and heat. The completeness of the descrip-
tion by the thermodynamic coordinates defined equilibrium states. The 
thermodynamic coordinates will now provide the framework for the 
solution of the central problem of thermodynamics. 

There is, in fact, one central problem that defines the core of thermody-
namic theory. All the ·ults of thermodynamics propagate from its 
SOiution. 
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The single, all-encompassing problem of thermodynamics is the determina-
tion of the equilibrium state that eventually results after the removal of 
internal constraints in a closed, composite system. 

Let us suppose that two simple systems are contained within a closed 
cylinder, separated from each other by an internal piston. Assume that the 
cylinder walls and the piston are rigid, impermeable to matter, and 
adiabatic and that the position of the piston is firmly fixed. Each of the 
systems is closed. If we now free the piston, it will, in general, seek some 
new position. Similarly, if the adiabatic coating is stripped from the fixed 
piston, so that heat can flow between the two systems, there will be a 
redistribution of energy between the two systems. Again, if holes are 
punched in the piston, there will be a redistribution of matter (and also of 
energy) between the two systems. The removal of a constraint in each case 
results in the onset of some spontaneous process, and when the systems 
finally settle into new equilibrium states they do so with new values of the 
parameters u(l>, v(l>, Np> · · · and U(2), V(2), Nfl · · · . The basic prob-
lem of thermodynamics is the calculation of the equilibrium values of 
these parameters . 

FIGURE 12 

. , = 

::=-Piston 

Cylinder~ 

Before formulating the postulate that provides the means of solution of 
the problem, we rephrase the problem in a slightly more general form 
without reference to such special devices as cylinders and pistons. Given 
two or more simple systems, they may be considered as constituting a 
single composite system. The composite system is termed closed if it is 
surrounded by a wall that is restrictive with respect to the total energy, the 
total volume, and the total mole numbers of each component of the 
composite system. The individual simple systems within a closed com-
posite system need not themselves be closed. Thus, in the particular 
example referred to, the composite system is closed even if the internal 
piston is free to move or has holes in it. Constraints that prevent the flow 
of energy, volume, or matter among the simple systems constituting the 
composite system are known as internal constraints. If a closed composite 
system is in equilibrium with respect to internal constraints, and if some 
of these constraints are then removed, certain previously disallowed 
processes become permissible. These processes bring the system to a new 
equilibrium state. Prediction of the new equilibrium state is the central 
problem of thermodynamics. 
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t.10 THE ENTROPY MAXIMUM POSTULATES 

The induction from experimental observation of the central principle 
that provides the solution of the basic problem is subtle indeed. The 
historical method, culminating in the analysis of Caratheodory, is a tour 
de force of delicate and formal logic. The statistical mechanical approach 
pioneered by Josiah Willard Gibbs required a masterful stroke of induc-
tive inspiration. The symmetry-based foundations to be developed in 
Chapter 21 will provide retrospective understanding and interpretation, 
but they are not yet formulated as a deductive basis. We therefore merely 
formulate the solution to the basic problem of thermodynamics in a set of 
postulates depending upon a posteriori rather than a priori justification. 
These postulates are, in fact, the most natural guess that we might make, 
providing the simplest conceivable formal solution to the basic problem. On 
this basis alone the problem might have been solved~ the tentative 
postulation of the simplest formal solution of a problem is a conventional 
and frequently successful mode of procedure in theoretical physics. 

What then is the simplest criterion that reasonably can be imagined for 
the determination of the final equilibrium state? From our experience with 
many physical theories we might expect that the most economical form 
for the equilibrium criterion would be in terms of an extremum principle. 
That is, we might anticipate the values of the extensive parameters in the 
final equilibrium state to be simply those that maximize 5 some function. 
And, straining our optimism to the limit, we might hope that this 
hypothetical function would have several particularly simple mathematical 
properties, designed to guarantee simplicity of the derived theory. We 
develop this proposed solution in a series of postulates. 

Postulate II. There exists a function ( called the entropy S) of the extensive 
parameters of any composite system, defined for all equilibrium states and 
having the foil owing property: The values assumed by the extensive parame-
ters in the absence of an internal constraint are those that maximize the 
entropy over the manifold of constrained equilibrium states. 

It must be stressed that we postulate the existence of the entropy only 
for equilibrium states and that our postulate makes no reference 
whatsoever to nonequilibrium states. In the absence of a constraint the 
system is free to select any one of a number of states, each of which might 
also be realized in the presence of a suitable constraint. The entropy of each 
of these constrained equilibrium states is definite, and the entropy is 
largest in some particular state of the set. In the absence of the constraint 
this state of maximum entropy is sel'tcted by the system. 

5 0r minimize the function, this being purely a matter of convention in the choice of the sign of the 
function, having no consequence whatever in the logical structure of the theory. 
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In the case of two systems separated by a diathermal wall we might 
wish to predict the manner in which the total energy U distributes 
between the two systems. We then consider the composite system with the 
internal diathermal wall replaced by an adiabatic wall and with particular 
values of u<1> and U(2) (consistent, of course, with the restriction that 
u<1> + U(2) = U). For each such constrained equilibrium state there is an 
entropy of the composite system, and for some particular values of u<1> 
and U(2) this entropy is maximum. These, then, are the values of u<1> and 
U(2) that obtain in the presence of the diathermal wall, or in the absence 
of the adiabatic constraint. 

All problems in thermodynamics are derivative from the basic problem 
formulated in Section 1.9. The basic problem can be completely solved 
with the aid of the extremum principle if the entropy of the system is 
known as a function of the extensive parameters. The relation that gives 
the entropy as a function of the extensive parameters is known as a 
fundamental relation. It therefore follows that if the fundamental relation of 
a particular system is known all conceivable thermodynamic information 
about the system is ascertainable from it. 

The importance of the foregoing statement cannot be overemphasized. 
The information contained in a fundamental relation is all-inclusive-it is 
equivalent to all conceivable numerical data, to all charts, and to all 
imaginable types of descriptions of thermodynamic properties. If the 
fundamental relation of a system is known, every thermodynamic attri-
bute is completely and precisely determined. 

Postulate III. The entropy of a composite system is additive over the 
constituent subsystems. The entropy is continuous and differentiable and is a 
monotonically increasing function of the energy. 

Several mathematical consequences follow immediately. The additivity 
property states that the entropy S of the composite system is merely the 
sum of the entropies s<0 > of the constituent subsystems: 

(1.4) 
a 

The entropy of each subsystem is a function of the extensive parameters 
of that subsystem alone 

(1.5) 

The additivity property applied to spatially separate subsystems re-
quires the following property: The entropy of a simple system is a homoge-
neous first-order function of the extensive parameters. That is, if all the 
extensive parameters of a system are multiplied by a constant A, the 
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entropy is multiplied by this same constant. Or, omitting the superscript 
( a), 

The monotonic property postulated implies that the partial derivative 
( as;au)v,N1,. ,N, is a positive quantity, 

( :i)V,N1, ,N, > Q (1.7) 

As the theory develops in subsequent sections, we shall see that the 
reciprocal of this partial derivative is taken as the definition of the 
temperature. Thus the temperature is postulated to be nonnegative. 6 

The continuity, differentiability, and monotonic property imply that the 
entropy function can be inverted with respect to the energy and that the 
energy is a single-valued, continuous, and differentiable function of 
S, V, N1, •.• , N,. The function 

(1.8) 

can be solved uniquely for V in the form 

V= U(S,V,Ni, ... ,NJ (1.9) 

Equations 1.8 and 1.9 are alternative forms of the fundamental relation, 
and each contains all thermodynamic information about the system. 

We note that the extensivity of the entropy permits us to scale the 
properties of a system of N moles from the properties of a system of 1 
mole. The fundamental equation is subject to the identity 

S( V, V, N1 , N2 , ... , N,) = NS( U/N, V /N, N1/N, ... , NJN) (1.10) 

in which we have taken the scale factor 'A of equation 1.6 to be equal to 
l/N = l/.Ek Nk. For a single-component simple system, in particular, 

S(U, V, N) = NS(U/N, V/N, l) (1.11) 

But V / N is the energy per mole, which we denote by u. 

u = U/N (1.12) 

6 The pos~ibility of negative values of this derivative (i.e., of negative temperatures) has been 
discussed by N F Ramsey, Phys. Rev. 103, 20 (1956) Such states are not equilibrium states m real 
systems, and they do not invalidate equation 1 7 They can be produced only m certain very unique 
systems (specifically in isolated spin systems) and they spontaneously decay away Nevertheless the 
study of these states is of stahshcal mechanical interest. elucidating the stahstical mechanical concept 
of temperature 
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Also, V / N is the volume per mole, which we denote by v. 

V= V/N (1.13) 

Thus S(U/N, V/N, 1) = S(u,v, 1) is the entropy of a system of a single 
mole, to be denoted by s( u, v ). 

s(u, v) = S(u, v, I) (1.14) 

Equation 1.11 now becomes 

S(U, V, N) = Ns(u, v) (1.15) 

Postulate IV. The entropy of any system vanishes in the state for which 

(oU/oS)v,N 1 , .N, = 0 ( that is, at the zero of temperature) 

We shall see later that the vanishing of the derivative (au/ oS)v N N 

is equivalent to the vanishing of the temperature, as indicated. Hen~e thJ 
fourth postulate is that zero temperature implies zero entropy. 

It should be noted that an immediate implication of postulate IV is that 
S (like V and N, but unlike V) has a uniquely defined zero. 

This postulate is an extens10n, due to Planck, of the so-called Nernst 
postulate or third law of thermodynamics. Historically, it was the latest of 
the postulates to be developed, being inconsistent with classical statistical 
mechanics and requiring the prior establishment of quantum statistics in 
order that it could be properly appreciated. The bulk of thermodynamics 
does not require this postulate, and I make no further reference to it until 
Chapter 10. Nevertheless, I have chosen to present the postulate at this 
point to close the postulatory basis. 

The foregoing postulates are the logical bases of our development of 
thermodynamics. In the light of these postulates, then, it may be wise to 
reiterate briefly the method of solution of the standard type of thermody-
namic problem, as formulated in Section 1.9. We are given a composite 
system and we assume the fundamental equation of each of the con-
stituent systems to be known in principle. These fundamental equations 
determine the individual entropies of the subsystems when these systems 
are in equilibrium. If the total composite system is in a constrained 
equilibrium state, with particular values of the extensive parameters of 
each constituent system, the total entropy is obtained by addition of the 
individual entropies. This total entropy is known as a function of the 
various extensive parameters of the subsystems. By straightforward differ-
entiation ~e comput_e the extrema of the total entropy function, and then, 
on the basis of the sign of the second derivative, we classify these extrema 
as minima, maxima, or as horizontal inflections. In an appropriate physi-
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cal terminology we first find the equilibrium states and we then classify 
them on the basis of stability. It should be noted that in the adoption of 
this conventional terminology we augment our previous definition of 
equilibrium; that which was previously termed equiltbrium is now termed 
stable equilibrium, whereas unstable equilibrium states are newly defined in 
terms of extrema other than maxima. 

It is perhaps appropriate at this point to acknowledge that although all 
applications of thermodynamics are equivalent in principle to the proce-
dure outlined, there are several alternative procedures that frequently 
prove more convenient. These alternate procedures are developed in 
subsequent chapters. Thus we shall see that under appropriate conditions 
the energy U(S, V, Ni, ... ) may be minimized rather than the entropy 
S( U, V, Ni, ... ), maximized. That these two procedures determine the 
same final state is analogous to the fact that a circ.;\e may be characterized 
either as the closed curve of minimum perimeter for a given area or as the 
closed curve of maximum area for a given perimeter. In later chapters we 
shall encounter several new functions, the minimization of which is 
logically equivalent to the minimization of the energy or to the maximiza-
tion of the entropy. 

The inversion of the fundamental equation and the alternative state-
ment of the basic extremum principle in terms of a minimum of the 
energy (rather than a maximum of the entropy) suggests another view-
point from which the extremum postulate perhaps may appear plausible. 
In the theories of electricity and mechanics, ignoring thermal effects, the 
energy is a function of various mechanical parameters, and the condition 
of equilibrium is that the energy shall be a minimum. Thus a cone is stable 
lying on its side rather than standing on its point because the first position 
is of lower energy. If thermal effects are to be included the energy ceases 
to be a function simply of the mechanical parameters. According to the 
inverted fundamental equation, however, the energy is a function of the 
mechanical parameters and of one additional parameter (the entropy). By 
the introduction of this additional parameter the form of the energy-
minimum principle is extended to the domain of thermal effects as well as 
to pure mechanical phenomena. In this manner we obtain a sort of 
correspondence principle between thermodynamics and mechanics-
ensuring that the thermodynamic equilibrium principle reduces to the me-
chanical equilibrium principle when thermal effects can be neglected. 

We shall see that the mathematical condition that a maximum of 
S( U, V, Ni, ... ) implies a minimum of U( S, V, N1, ... ) is that the deriva-
tive ( iJS / iJU)v N be positive. The motivation for the introduction of 
this statement in postulate III may be understood in terms of our desire to 
ensure that the entropy-maximum principle will go over into an energy-
minimum principle on inversion of the fundamental equation. 

In Parts II and III the concept of the entropy will be more deeply 
explored, both in terms of its symmetry roots and in terms of its statistical 
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mechanical interpretation. Pursuing those inquires now would take us too 
far afield. In the classical spirit of thermodynamics we temporarily def er 
such interpretations while exploring the far-reaching consequences of our 
simple postulates. 

PROBLEMS 

1.10-1. The following ten equations are purported to be fundamental equations 
of various thermodynamic systems. However, five are inconsistent with one or 
more of postulates II, III, and IV and consequently are not physically acceptable. 
In each case qualitatively sketch the fundamental relationship between S and U 

(with N and V constant). Find the five equations that are not physically 
permissible and indicate the postulates violated by each. 

The quantities v0 , (}, and R are positive constants, and in all cases in which 
fractional exponents appear only the real positive root is to be taken. 

a) S = ( R2 )1;3(NVU)1;3 
Vo(} 

b) S=(:2r/3(N:r/3 

c) S -(: t'( NU+ R~t r 
d) S = ( ~;(}) V 3/NU 

e) S = (!f_)'I\N2VU2]1f5 
Vo()2 

/) S = NRln(UV/N 2ROv0 ) 

g) S = (; f 1\NUJ 1l 2exp(- V2/2N 2vl) 

h) S =( R ) 11\NU) 112exp(- ~) (} NR0v 0 

i) U = ( vt) 'f exp(S/NR) 

j) U =( ~: )N~ 1 + ;R) exp(-S/NR) 

1.10-2. For each of the five physically acceptable fundamental equations in 
problem 1.10-1 find U as a function of S, V, and N. 
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1.10-3. The fundamental equation of system A is 

S = ( R2 )l/3(NVU)1;3 
vof} 

and similarly for system B. The two systems are separated by a rigid, imperme-
able, adiabatic wall. System A has a volume of 9 X 10- 6 m3 and a mole number 
of 3 moles. System B has a volume of 4 X 10- 6 m3 and a mole number of 2 
moles. The total energy of the composite system is 80 J. Plot the entropy as a 
function of UA/(UA + U8 ). If the internal wall is now made diathermal and the 
system is allowed to come to equilibrium, what are the internal energies of each of 
the individual systems? (As in Problem 1.10-1, the quantities v0 , (}, and R are 
positive constants.) 


