
5 
ALTERNATIVE FORMULATIONS 

AND 
LEGENDRE TRANSFORMATIONS 

5-1 THE ENERGY MINIMUM PRINCIPLE 

In the preceding chapters we have inf erred some of the most evident 
and immediate consequences of the principle of maximum entropy. Fur-
ther consequences will lead to a wide range of other useful and fundamen-
tal results. But to facilitate those developments it proves to be useful now 
to reconsider the formal aspects of the theory and to note that the same 
content can be reformulated in several equivalent mathematical forms. 
Each of these alternative formulations is particularly convenient in par-
ticular types of problems, and the art of thermodynamic calculations lies 
largely in the selection of the particular theoretical formulation that most 
incisively "fits" the given problem. In the appropriate formulation ther-
modynamic problems tend to be remarkably simple; the converse is that 
they tend to be remarkably complicated in an inappropriate formalism! 

Multiple equivalent formulations also appear in mechanics-Newto-
nian, Lagrangian, and Hamiltonian formalisms are tautologically equiv-
alent. Again certain problems are much more tractable in a Lagrangian 
formalism than in a Newtonian formalism, or vice versa. But the dif-
ference in convenience of different formalisms is enormously greater in 
thermodynamics. It is for this reason that the general theory of transforma-
tion among equivalent representations is here incorporated as a fundamental 
aspect of thermostatistical theory. 

In fact we have already considered two equivalent representations- the 
energy representation and the entropy representation. But the basic ex-
tremum principle has been formulated only in the entropy representation. 
If these two representations are to play parallel roles in the theory we 
must find an extremum principle in the energy representation, analogous 
to the entropy maximum principle. There is, indeed, such an extremum 
principle; the principle of maximum entropy is equivalent to, and can be 
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The equilibrium state A as a point of maximum S for constant U. 

replaced by, a principle of minimum energy. Whereas the entropy maxi-
mum principle characterizes the equilibrium state as having maximum 
entropy for given total energy, the energy minimum principle char-
acterizes the equilibrium state as having minimum energy for given total 
entropy. 

Figure 5.1 shows a section of the thermodynamic configuration space 
for a composite system, as discussed in Section 4.1. The axes labeled S 
and U correspond to the total entropy and energy of the composite 
system, and the axis labeled X}1> corresponds to a particular extensive 
parameter of the first subsystem. Other axes, not shown explicitly in the 
figure, are u<1), X1 , and other pairs xp>, Xk. 

The total energy of the composite system is a constant determined by 
the closure condition. The geometrical representation of this closure 
condition is the requirement that the state of the system lie on the plane 
U = U0 in Fig. 5.1. The fundamental equation of the system is repre-
sented by the surface shown, and the representative point of the system 
therefore must be on the curve of intersection of the plane and the surface. 
If the parameter X}IJ is unconstrained, the equilibrium state is the 
particular state that maximizes the entropy along the permitted curve; the 
state labeled A in Fig. 5.1. 

The alternative representation of the equilibrium state A as a state of 
minimum energy for given entropy is illustrated in Fig. 5.2. Through the 
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The equilibrium state A as a point of minimum U for constant S. 

equilibrium point A is passed the plane S = S0 , which determines a curve 
of intersection with the fundamental surface. This curve consists of a 
family of states of constant entropy, and the equilibrium state A is the state 
that minimizes the energy along this curve. 

The equivalence of the entropy maximum and the energy minimum 
principles clearly depends upon the fact that the geometrical form of the 
fundamental surface is generally as shown in Fig. 5.1 and 5.2. As dis-
cussed in Section 4.1, the form of the surface shown in the figures is 
determined by the postulates that as/ au > o and that u is a single-val-
ued continuous function of S; these analytic postulates accordingly are 
the underlying conditions for the equivalence of the two principles. 

To recapitulate, we have made plausible, though we have not yet 
proved, that the following two principles are equivalent: 

Entropy Maximum Principle. The equilibrium value of any unconstrained 
internal parameter is such as to maximize the entropy for the given value of 
the total internal energy. 

Energy Minimum Principle. The equihbrium value of any unconstrained 
internal parameter is such as to minimize the energy for the given value of 
the total entropy. 
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The proof of the equivalence of the two extremum criteria can be 
formulated either as a physical argument or as a mathematical exercise. 
We turn first to the physical argument, to demonstrate that if the energy 
were not minimum the entropy could not be maximum in equilibrium, 
and inversely. 

Assume, then, that the system is in equilibrium but that the energy does 
not have its smallest possible value consistent with the given entropy. We 
could then withdraw energy from the system (in the form of work) 
maintaining the entropy constant, and we could thereafter return this 
energy to the system in the form of heat. The entropy of the system would 
increase ( dQ = T dS), and the system would be restored to its original 
energy but with an increased entropy. This is inconsistent with the 
principle that the initial equilibrium state is the state of maximum 
entropy! Hence we are forced to conclude that the original equilibrium 
state must have had minimum energy consistent with the prescribed 
entropy. 

The inverse argument, that minimum energy implies maximum entropy, 
is similarly constructed (see Problem 5.1-1). 

In a more formal demonstration we assume the entropy maximum 
principle 

( ;~ L = 0 and ( a2s) < 0 
ax2 u 

(5.1) 

where, for clarity, we have written X for X}1>, and where it is implicit that 
all other X's are held constant throughout. Also, for clarity, we tempo-
rarily denote the first derivative (au/ a X) s by P. Then (by equation A.22 
of Appendix A) 

-T( as) = o ax u 
(5.2) 

We conclude that U has an extremum. To classify that extremum as a 
maximum, a minimum, or a point of inflection we must study the sign of 
the second derivative(a 2u;ax 2)s = (aP;aX)s- But considering Pas a 
function of U and X we have 

( !~ L = ( ;~ L = ( :~) j ;~ L + ( ;~) u = ( :~) xp + ( ;~) v 

(5.3) 

at P = 0 (5.4} 
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= __i_[-( *) ul (5.5) ax (as) 
au x u 

a2s a2s -- ---ax2 as axau 
- as + ax ( as )2 (s.6) 

au au 
a2s -T--> 0 ax2 

as at-=0 ax 
so that U is a minimum. The inverse argument is identical in form. 

(5.7) 

As already indicated, the fact that precisely the same situation is 
described by the two extremal criteria is analogous to the isoperimetric 
problem in geometry. Thus a circle may be characterized either as the two 
dimensional figure of maximum area for given perimeter or, alternatively, 
as the two dimensional figure of minimum perimeter for given area. 

The two alternative extremal criteria that characterize a circle are 
completely equivalent, and each applies to every circle. Yet they suggest 
two different ways of generating a circle. Suppose we are given a square 
and we wish to distort it continuously to generate a circle. We may keep 
its area constant and allow its bounding curve to contract as if it were a 
rubber band. We thereby generate a circle as the figure of minimum 
perimeter for the given area. Alternatively we might keep the perimeter of 
the given square constant and allow the area to increase, thereby obtain-
ing a (different) circle, as the figure of maximum area for the given 
perimeter. However, after each of these circles is obtained each satisfies 
both extremal conditions for its final values of area and perimeter. 

The physical situation pertaining to a thermodynamic system is very 
closely analogous to the geometrical situation described. Again, any 
equilibrium state can be characterized either as a state of maximum 
entropy for given energy or as a state of minimum energy for given 
entropy. But these two criteria nevertheless suggest two different ways of 
attaining equilibrium. As a specific illustration of these two approaches to 
equilibrium, consider a piston originally fixed at some point in a closed 
cylinder. We are interested in bringing the system to equilibrium without 
the constraint on the position of the piston. We can simply remove the 
constraint and allow the equilibrium to establish itself spontaneously; the 
entropy increases and the energy is maintained constant by the closure 
condition. This is the process suggested by the entropy maximum princi-
ple. Alternatively, we can permit the piston to move very slowly, reversi-
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bly doing work on an external agent until it has moved to the position 
that equalizes the pressure on the two sides. During this process energy is 
withdrawn from the system, but its entropy remains constant (the process 
is reversible and no heat flows). This is the process suggested by the 
energy minimum principle. The vital fact we wish to stress, however, is 
that independent of whether the equilibrium is brought about by either of 
these two processes, or by any other process, the final equilibrium state in 
each case satisfies both extremal conditions. 

Finally, we illustrate the energy minimum principle by using it in place 
of the entropy maximum principle to solve the problem of thermal 
equilibrium, as treated in Section 2.4. We consider a closed composite 
system with an internal wall that is rigid, impermeable, and diathermal. 
Heat is free to flow between the two subsystems, and we wish to find the 
equilibrium state. The fundamental equation in the energy representation 
is 

All volume and mole number parameters are constant and known. The 
variables that must be computed are s<1> and S(2). Now, despite the fact 
that the system is actually closed and that the total energy is fixed, the 
equilibrium state can be characterized as the state that would minimize 
the energy if energy changes were permitted. The virtual change in total 
energy associated with virtual heat fluxes in the two systems is 

dU = r<1> ds<1> + r<2> ds<2> (5.9) 

The energy minimum condition states that dU = 0, subject to the condi-
tion of fixed total entropy: 

S(l) + S(l) = Constant (5.10) 

whence 

dU = (r< 1> - r<2>)ds<1> = 0 (5.11) 

and we conclude that 

r<1> = r<2> (5.12) 

The energy minimum principle thus provides us with the same condi-
tion of thermal equilibrium as we previously found by using the entropy 
maximum principle. 

Equation 5.12 is one equation in s<1> and s<2>. The second equation is 
most conveniently taken as equation 5.8, in which the total energy U is 
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known and which consequently involves only the two unknown quantities 
s<1> and S(2). Equations 5.8 and 5.12, in principle, permit a fully explicit 
solution of the problem. 

In a precisely analogous fashion the equilibrium condition for a closed 
composite system with an internal moveable adiabatic wall is found to be 
equality of the pressure. This conclusion is straightforward in the energy 
representation but, as was observed in the last paragraph of Section 2.7, it 
is relatively delicate in the entropy representation. 

PROBLEMS 

5.1-1. Formulate a proof that the energy minimum principle implies the entropy 
maximum principle-the "inverse argument" referred to after equation 5.7. That 
is, show that if the entropy were not maximum at constant energy then the energy 
could not be minimum at constant entropy. 
Hint: First show that the permissible mcrease in entropy in the system can be 
exploited to extract heat from a reversible heat source (initially at the same 
temperature as the system) and to deposit it in a reversible work source. The 
reversible heat source is thereby cooled. Continue the argument. 

5.1-2. An adiabatic, impermeable and fixed piston separates a cylinder into two 
chambers of volumes V0/4 and 3V0/4. Each chamber contains 1 mole of a 
monatomic ideal gas. The temperatures are T,; and ~. the subscripts s and I 
referring to the small and large chambers, respectively. 
a) The piston is made thermally conductive and moveable, and the system 
relaxes to a new equilibrium state, maximizing its entropy while conserving its total 
energy. Find this new equilibrium state. 
b) Consider a small virtual change in the energy of the system, maintaining the 
entropy at the value attained in part (a). To accomplish this physically we can 
reimpose the adiabatic constraint and quasistatically displace the piston by 
imposition of an external force. Show that the external source of this force must 
do work on the system in order to displace the piston in either direction. Hence 
the state attamed in part (a) is a state of minimum energy at constant entropy. 
c) Reconsider the initial state and specify how equilibrium can be established by 
decreasing the energy at constant entropy. Find this equilibrium state. 
d) Describe an operation that demonstrates that the equilibrium state attained in 
( c) is a state of maximum entropy at constant energy. 

5-2 LEGENDRE TRANSFORMATIONS 

In both the energy and entropy representations the extensive parame-
ters play the roles of mathematically independent variables, whereas the 
intensive parameters arise as derived concepts. This situation is in direct 
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contrast to the practical situation dictated by convenience in the labora-
tory. The experimenter frequently finds that the intensive parameters are 
the more easily measured and controlled and therefore is likely to think of 
the intensive parameters as operationally independent variables and of the 
extensive parameters as operationally derived quantities. The extreme 
instance of this situation is provided by the conjugate variables entropy 
and temperature. No practical instruments exist for the measurement and 
control of entropy, whereas thermometers and thermostats, for the mea-
surement and control of the temperature, are common laboratory 
equipment. The question therefore arises as to the possibility of recasting 
the mathematical formalism in such a way that intensive parameters will 
replace extensive parameters as mathematically independent variables. We 
shall see that such a reformulation is, in fact, possible and that it leads to 
various other thermodynamic representations. 

It is, perhaps, superfluous at this point to stress again that thermody-
namics is logically complete and self-contained within either the entropy 
or the energy representations and that the introduction of the transformed 
representations is purely a matter of convenience. This is, admittedly, a 
convenience without which thermodynamics would be almost unusably 
awkward, but in principle it is still only a luxury rather than a logical 
necessity. 

The purely formal aspects of the problem are as follows. We are given 
an equation (the fundamental relation) of the form 

Y = Y(X 0 , X., ... , Xi) (5.13) 

and it is desired to find a method whereby the derivatives 

(5.14) 

can be considered as independent variables without sacrificing any of the 
informational content of the given fundamental relation(5.13).This formal 
problem has its counterpart in geometry and in several other fields of 
physics. The solution of the problem, employing the mathematical tech-
nique of Legendre transformations, is most intuitive when given its 
geometrical interpretation; and it is this geometrical interpretation that we 
shall develop in this Section. 

For simplicity, we first consider the mathematical case in which the 
fundamental relation is a function of only a single independent vari-
able X. 

Y = Y(X) (5.15) 

Geometrically, the fundamental relation is represented by a curve in a 
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X FIGURE 5.3 

space (Fig. 5.3) with cartesian coordinates X and Y, and the derivative 

(5.16) 

is the slope of this curve. Now, if we desire to consider P as an 
independent variable in place of X, our first impulse might be simply to 
eliminate X between equations 5.15 and 5.16, thereby obtaining Y as a 
function of P 

Y = Y(P) (5.17) 

A moment's reflection indicates, however, that we would sacrifice some of 
the mathematical content of the given fundamental relation (5.15) for, 
from the geometrical point of view, it is clear that knowledge of Y as a 
function of the slope dY / dX would not permit us to reconstruct the curve 
Y = Y( X). In fact, each of the displaced curves shown in Fig. 5.4 
corresponds equally well to the relation Y = Y( P). From the analytical 
point of view the relation Y = Y( P) is a first-order differential equation, 
and its integration gives Y = Y( X) only to within an undetermined 
integration constant. Therefore we see that acceptance of Y = Y(P) as a 
basic equation in place of Y = Y( X) would involve the sacrifice of some 
information originally contained in the fundamental relation. Despite the 

y 

X FIGURE 5.4 
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X 
FIGURE 5.5 

desirability of having P as a mathematically independent variable, this 
sacrifice of the informational content of the formalism would be com-
pletely unacceptable. 

The practicable solution to the problem is supplied by the duality 
between conventional point geometry and the Pluecker line geometry. The 
essential concept in line geometry is that a given curve can be represented 
equally well either (a) as the envelope of a family of tangent lines (Fig. 
5.5), or ( b) as the locus of points satisfying the relation Y = Y( X). Any 
equation that enables us to construct the family of tangent lines therefore 
determines the curve equally as well as the relation Y = Y( X). 

Just as every point in the plane is described by the two numbers X and 
Y, so every straight line in the plane can be described by the two numbers 
P and \/;, where P is the slope of the line and \/; is its intercept along the 
Y-axis. Then just as a relation Y = Y( X) selects a subset of all possible 
points ( X, Y), a relation \/; = \/;( P) selects a subset of all possible lines 
( P, \/; ). A knowledge of the intercepts \/; of the tangent lines as a function 
of the slopes P enables us to construct the family of tangent lines and 
thence the curve of which they are the envelope. Thus the relation 

\/; = l/;(P) (5.18) 

is completely equivalent to the fundamental relation Y = Y( X). In this 
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relation the independent variable is P, so that equation 5.18 provides a 
complete and satisfactory solution to the problem. As the relation iJ; = 
!J;( P) is mathematically equivalent to the relation Y = Y( X), it can also 
be considered a fundamental relation; Y = Y( X) is a fundamental rela-
tion in the "¥-representation"; whereas iJ; = !J;(P) is a fundamental 
relation in the "!J;-representation." 

The reader is urged at this point actually to draw a reasonable number 
of straight lines, of various slopes P and of various ¥-intercepts iJ; = - P 2• 

The relation iJ; = - P 2 thereby will be seen to characterize a parabola 
(which is more conventionally described as Y = i X 2 ). In !J;-representation 
the fundamental equation of the parabola is iJ; = - P 2 , whereas in ¥-rep-
resentation the fundamental equation of this same parabola is Y = iX 2 • 

The question now arises as to how we can compute the relation 
iJ; = !J;( P) if we are given the relation Y = Y( X). The appropriate 
mathematical operation is known as a Legendre transformation. We 
consider a tangent line that goes through the point ( X, Y) and has a slope 
P. If the intercept is !J;, we have (see Fig. 5.6) 

or 

t 
y 

y - iJ; 
p = X-0 

Let us now suppose that we are given the equation 

Y = Y(X) 

(0,IJ,) 

x- FIGURE 56 

(5.19) 

(5.20) 

(5.21) 
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and by differentiation we find 

P = P(X) (5.22) 

Then by elimination 1 of X and Y among equations 5.20, 5.21, and 5.22 we 
obtain the desired relation between \/; and P. The basic identity of the 
Legendre transformation is equation 5.20, and this equation can be taken 
as the analytic definition of the function \f;. The function \/; is referred to 
as a Legendre transform of Y. 

The inverse problem is that of recovering the relation Y = Y( X) if the 
relation \/; = \/;( P) is given. We shall see here that the relationship 
between ( X, Y) and ( P, \/;) is symmetrical with its inverse, except for a 
sign in the equation of the Legendre transformation. Taking the differen-
tial of equation 5.20 and recalling that dY = P dX, we find 

or 

d\f; = dY- PdX- XdP 

= -XdP 

-x = d\f; 
dP 

(5.23) 

(5.24) 

If the two variables \/; and P are eliminated 2 from the given equation 
\/; = \/;( P) and from equations 5.24 and 5.20, we recover the relation 
Y = Y( X). The symmetry between the Legendre transformation and its 
inverse is indicated by the following schematic comparison: 

Y = Y(X) 
p = dY 

dX 
\f;=-PX+Y 

Elimination of X and Y yields 
\/; = \/;( P) 

\/; = \f;(P) 

-x = d\f; 
dP 

Y = XP + \/; 
Elimination of P and \/; yields 

Y = Y(X) 

The generalization of the Legendre transformation to functions of more 
than a single independent variable is simple and straightforward. In three 
dimensions Y is a function of X0 and X1, and the fundamental equation 
represents a surface. This surface can be considered as the locus of points 

1TJ-us ehmmat10n 1s po~~1blc 1f P 1s not independent of X, that 1s, 1f d 2 Y/dX 2 * 0 In the 
thermodynamic application this cntenon will tum out to be 1den1Ical to the cntenon of ,tab1hty The 
en tenon f,uls only at the "cntical pomt~." whJCh arc d,,cus,cd m detail m Chapter IO 

2 The cond1t10n that th1~ be possible 1s that d 2,J,/i/P 2 4' 0, which will. m the thermodynamic 
application, be guaranteed by the stab1hty of the system under cons1derallon 
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satisfying the fundamental equation Y = Y(X 0 , X1), or it can be consid-
ered as the envelope of tangent planes. A plane can be characterized by its 
intercept 1/; on the Y-axis and by the slopes P0 and P1 of its traces on the 
Y - X 0 and Y - X1 planes. The fundamental equation then selects from 
all possible planes a subset described by 1/; = v,(P 0 , P1). 

In general the given fundamental relation 

Y = Y(X 0 , X1, .•. , X,) (5.25) 

represents a hypersurface in a ( t + 2)-dimensional space with cartesian 
coordinates Y, X 0 , X1, ••• , X,. The derivative 

(5.26) 

is the partial slope of this hypersurface. The hypersurface may be equally 
well represented as the locus of points satisfying equation 5.25 or as the 
envelope of the tangent hyperplanes. The family of tangent hyperplanes 
can be characterized by giving the intercept of a hyperplane, 1/;, as a 
function of the slopes P0 , P1, .•• , P,. Then 

(5.27) 

Taking the differential of this equation, we find 

(5.28) 

whence 

(5.29) 

A Legendre transformation is effected by eliminating Y and the X1. from 
Y = Y( X0 , X1, ••• , X,), the set of equations 5.26, and equation 5.27. The 
inverse transformation is effected by eliminating 1/; and the P1,. from 
1/; = v,(P 1, P2 , ••• , Pr), the set of equations 5.29, and equation 5.27. 

Finally, a Legendre transformation may be made only in some ( n + 2)-
dimensional subspace of the full ( t + 2)-dimensional space of the relation 
Y = Y( X 0 , X1, ••• , X,). Of course the subspace must contain the Y-coor-
dinate but may involve any choice of n + 1 coordinates from the set 
X 0 , X1, ••• , X,. For convenience of notation, we order the coordmates so 
that the Legendre transformation is made in the subspace of the first 
n + 1 coordinates (and of Y); the coordinates Xn+i• X"_._~ ••... X ::trf" Jpft 
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untransformed. Such a partial Legendre transformation is effected merely 
by considering the variables Xn+ 1, Xn-1 2 , ••• , X, as constants in the trans-
formation. The resulting Legendre transform must be denoted by some 
explicit notation that indicates which of the independent variables 
have participated in the transformation. We employ the notation 
Y[P 0 , Pi, ... , Pn] to denote the function obtained by making a Leg-
endre transformation with respect to X 0 , X1, ••• , X 11 on the function 
Y( X0 , Xi, ... , X,). Thus Y[ P0 , P1, .•• , Pn] is a function of the independent 
variables P0 , Pi, ... , Pn, Xn+ 1, ••• , X,. The various relations involved in a 
partial Legendre transformation and its inverse are indicated in the 
following table. 

Y = Y(X 0 , Xi,···• X,) 

The partial differentiation denotes 
constancy of all the natural varia-
bles of Yother than Xk (i.e., of all 
X1 with j *-k) 

n 

Y[P 0 , ••• , Pn] = Y - LPkXk 
0 

Elimination of Y and X 0 , 

Xi, ... , xn from equations 5.30, 
5.33, and the first n + 1 equations 
of 5.31 yields the transformed 
fundamental relation. 

Y[P 0 , P 1, •.. , P11] = function of 
Po, P1, ... ' Pn, X11 f- I• ••• ' X, 

(5.30) 
ay [ Po, ... ' p11] 

-Xk = aP 
k 

ksn 

(5.31) 
aY[P 0 , • .• , Pn] 

P" = axk k>n 

The partial differentiation denotes 
constancy of all the natural varia-
bles of Y(P0 , ••• , Pn) other than 
that with respect to which the 
differentiation is being carried out. 

dY[P 0 , .•. , P,,] 

II t 

- '[,XkdPk + L PkdX" 
0 n+l 

(5.32) 
II 

0 
(5.33) 

Elimination of Y[P 0 , •.. , P,,] and 
P 0 , Pi, ... , Pn from equations 
5.30, 5.33, and the first n + 1 
equations of 5.31 yields the origi-
nal fundamental relation. 

In this section we have divorced the mathematical aspects of Legendre 
transformations from the physical applications. Before proceeding to the 
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thermodynamic applications in the succeeding sections of this chapter, it 
may be of interest to indicate very briefly the application of the formalism 
to Lagrangian and Hamiltonian mechanics, which perhaps may be a more 
familiar field of physics than thermodynamics. The Lagrangian principle 
guarantees that a particular function, the Lagrangian, completely char-
acterizes the dynamics of a mechanical system. The Lagrangian is a 
function of 2r variables, r of which are generaltzed coordinates and r of 
which are generalized velocities. Thus the equation 

(5.34) 

plays the role of a fundamental relation. The generalized momenta are 
defined as derivatives of the Lagrangian function 

p = aL 
k - av 

k 
(5.35) 

If it is desired to replace the velocities by the momenta as independent 
variables, we must make a partial Legendre transformation with respect to 
the velocities. We thereby introduce a new function, called the Hamilto-
nian, defined by 3 

r 

(5.36) 

A complete dynamical formalism can then be based on the new funda-
mental relation 

(5.37) 

Furthermore, by equation 5.31 the derivative of H with respect to Pk is 
the velocity vk, which is one of the Hamiltonian dynamical equations. 
Thus, if an equation of the form 5.34 is considered as a dynamical 
fundamental equation in the Lagrangian representation, the Hamiltonian 
equation (5.37) is the equivalent fundamental equation expressed in the 
Hamiltonian representation. 

PROBLEMS 

5.2-1. The equation y = x 2/10 describes a parabola. 
a) Find the equation of this parabola in the "line geometry representation" 
if,= if,(P). 
b) On a sheet of graph paper ( covering the range roughly from x = - 15 to 
x = + 15 and from y = - 25 to y = + 25) draw straight lines with slopes P = 0, 

3 1n our Ul,age the Legendre transform of the Lagrangian u, the nep,utwe H,1m1ltoman Actually, the 
accepted mathemahcal convenhon agrees with the usage m mechamc~, and the function - ,J, would be 
called the Legendre transform of Y 
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± 0.5, ± I, ± 2, ±3 and with intercepts i/; satisfying the relationship i/; = i/;(P) as 
found in part (a). (Drawing each straight line is facilitated by calculating its 
intercepts on the x-axis and on the y-axis.) 
5.2-2. Let y = Ae 8 x. 

a) Find i/;(P). 
b) Calculate the inverse Legendre transform of i/; ( P) and corroborate that this 
result is y(x). 
c) Taking A = 2 and B = 0.5, draw a family of tangent lines in accordance with 
the result found in (a), and check that the tangent curve goes through the 
expected points at x = 0, 1, and 2. 

5-3 THERMODYNAMIC POTENTIALS 

The application of the preceding formalism to thermodynamics is 
self-evident. The fundamental relation Y = Y( X0 , X1, ... ) can be inter-
preted as the energy-language fundamental relation U = U(S, 
X1, X2 , ••• , X,) or U = U(S, V, N1, N2 , ••• ). The derivatives P0 , P 1, ... 

correspond to the intensive parameters T, -P, µ1, µ2 , .... The Legendre 
transformed functions are called thermodynamic potentials, and we now 
specifically define several of the most common of them. In Chapter 6 we 
continue the discussion of these functions by deriving extremum princi-
ples for each potential, indicating the intuitive significance of each, and 
discussing its particular role in thermodynamic theory. But for the mo-
ment we concern ourselves merely with the formal aspects of the defini-
tions of the several particular functions. 

The Helmholtz potential or the Helmholtz free energy, is the partial 
Legendre transform of U that replaces the entropy by the temperature as 
the independent variable. The internationally adopted symbol for the 
Helmholtz potential is F. The natural variables of the Helmholtz potential 
are T, V, N 1, N2 , • • • • That is, the functional relation F = 
F( T, V, N1, N2 , ••• ) constitutes a fundamental relation. In the systematic 
notation introduced in Section 5.2 

F = U[T] (5.38) 

The full relationship between the energy representation and the 
Helmholtz representation, is summarized in the following schematic com-
panson: 

U = U(S, V, N1, N2 , ••• ) 

T= au;as 
F= U- TS 

Elimination of U and S yields 
F = F(T, V, N 1, N2 , ••• ) 

F= F(T,V,N 1,N 2 , ••. ) 

-s = aF;aT 
U= F+ TS 

Elimination of F and T yields 
U = U(S, V, N 1, N2 , ••• ) 

(5.39) 
(5.40) 
(5.41) 
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The complete differential dF is 

(5.42) 

The enthalpy is that partial Legendre transform of U that replaces the 
volume by the pressure as an independent variable. Following the recom-
mendations of the International Unions of Physics and of Chemistry, and 
in agreement with ahnost universal usage, we adopt the symbol H for the 
enthalpy. The natural variables of this potential are S, P, Ni, N2, ••• and 

H = U[P] (5.43) 

The schematic representation of the relationship of the energy and en-
thalpy representations is as follows: 

U = U( S, V, N1, N2 , ••• ) 

-P = au;av 
H = U + PV 

Elimination of U and V yields 
H = H(S,P,Ni,N 2 , ••• ) 

H = H(S, P, Ni, N2 , ••• ) 

V= aH;aP 
U= H- PV 

Elimination of H and P yields 
U= U(S,V,Ni,N 2 , ••• ) 

(5.44) 
(5.45) 
(5.46) 

Particular attention is called to the inversion of the signs in equations 
5.45 and 5.46, resulting from the fact that -P is the intensive parameter 
associated with V. The complete differential dH is 

dH = TdS + VdP + P.idN 1 + µ2 dN2 + ·· · (5.47) 

The third of the common Legendre transforms of the energy is the 
Gibbs potential, or Gibbs free energy. This potential is the Legendre 
transform that simultaneously replaces the entropy by the temperature 
and the volume by the pressure as independent variables. The standard 
notation is G, and the natural variables are T, P, N1, N2 , •••• We thus 
have 

and 

G= U[T,P] 

U = U(S, V, N1, N2 , ••• ) 

T = au;as 
-P = au;av 

G = U- TS+ PV 

G= G(T,P,N 1,N 2 , ••• ) 

-s = aG;ar 
v = aG/aP 
U = G + TS- PV 

(5.48) 

(5.49) 
(5.50) 
(5.51) 
(5.52) 

Elimination of U, S, and V yields Elimination of G, T, and P yields 
G = G(T, P, N1, N2, • •• ) U = U(S, V, N1, N2 , ••• ) 
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The complete differential dG is 

dG = - S dT + V dP + µ.1 dN 1 + µ. 2 dN2 + (5.53) 
A thermodynamic potential which arises naturally in statistical me-

chanics is the grand canonical potential, U[T, µ.]. For this potential we 
have 

U = U(S, V, N) 
T = au;as 
µ. = au;aN 

U [ T, µ.] = U - TS - µ.N 
Elimmation of 

U, S, and N yields 
U [ T, µ.] as a function of T, V, µ. 

and 

U[T, µ.] = function of T, V, andµ. (5.54) 
-s = oU[T, µ.]/ oT (5.55) 
- N = oU[T, µ.]/ oµ. (5.56) 

U = U[T, µ.] + TS+ µ.N (5.57) 
Elimination of 

U [ T, µ. ], T, and µ. yields 
U= U(S, V, N) 

dU[T,µ.] = -SdT- PdV- Ndµ (5.58) 

Other possible transforms of the energy for a simple system, which are 
used only infrequently and which consequently are unnamed, are U[µ.iJ, 
U[P, µ.i], U[T, µ.1, µ.2 ], and so forth. The complete Legendre transform is 
U[T, P, µ.1, µ.2 , ••• , P.r1· The fact that U(S, V, N1, N2 , ... , N,) is a homoge-
neous first-order function of its arguments causes this latter function to 
vanish identically. For 

(5.59) 

which, by the Euler relation (3.6), is identically zero 

(5.60) 

PROlJLEMS 

5.3-1. Find the fundamental equation of a monatomic ideal gas in the Helmholtz 
representation, in the enthalpy representation, and in the Gibbs representation. 
Assume the fundamental equation computed in Section 3.4. In each case find the 
equations of state by differentiation of the fundamental equation. 
5.3~2. Find the fundamental equation of the ideal van der Waals fluid (Section 
3.5) in the Helmholtz representation. 

Perform an inverse Legendre transform on the Helmholtz potential and show 
that the fundamental equation in the energy representation is recovered. 
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5.3-3. Find the fundamental equation of electromagnetic radiation in the Helm-
holtz representation. Calculate the "thermal" and "mechanical" equations of 
state and corroborate that they agree with those given in Section 3.6. 
5.3-44 . Justify the following recipe for obtaining a plot of F(V) from a plot of 
G(P) (the common dependent variables T and N being notationally suppressed 
for convenience). 

t 
G 

A 

t 
F 

l---~---------
1 

I 
I 
I 
I 

p 

D 
/ 

/ 
/ 

-,f-----B 
/ I 

-----c F(V) 

V 

(1) At a chosen value of P draw the tangent line A. 
(2) Draw horizontal lines B and C through the intersections of A with P = 1 and 
p = 0. 
(3) Draw the 45° line D as shown and project the intersection of B and D onto 
the line C to obtain the point F( V). 
Hint: Identify the magnitude of the two vertical distances indicated in the G 
versus P diagram, and also the vertical separation of lines B and C. 

Note that the units of F and V are determined by the chosen units of G and P. 
Explain. 

Give the analogous construction for at least one other pair of potentials. 
Note that G ( P) is drawn as a concave function (i.e., negative curvature) and 

show that this is equivalent to the statement that Ky> 0. 
5.3-5. From the first acceptable fundamental equation in Problem 1.10-1 calcu-
late the fundamental equation in Gihbs representation. Calculate a(T, P), 
K 7 (T, P), and cP(T, P) by differentiation of G. 
5.3-6. From the second acceptable fundamental equation in Problem 1.10-1 
calculate the fundamental equation in enthalpy representation. Calculate 
V(S, P, N) by differentiation. 
5.3-7. The enthalpy of a particular system is 

H = AS 2N- 11n( ~) 

4Adapted from H E Stanley, lntroductwn to Phase Transctwns and Crttllal Phenomena (Oxford 
Umvcrs1ty Press, 1971) 
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where A is a positive constant. Calculate the molar heat capacity at constant 
volume cv as a function of T and P. 
5.3-8. In Chapter 15 it is shown by a statistical mechanical calculation that the 
fundamental equation of a system of N "atoms" each of which can exist in an 
atomic state with energy Eu or in an atomic state with energy Ed (and in no other 
state) is 

F= - Nk 8 T'0(e-/J•. + e-/J•d) 

Here k 8 is Boltzmann's constant and /1 = l/k 8 T. Show that the fundamental 
equation of this system, in entropy representation, is 

where 
U-NE Y= u 
NEd-u 

Hint: Introduce [1 = (k 8 T)- 1, and show first that U = F + [1aF ;ap = 
iJ([1F)/a{3. Also, for definiteness, assume E,, < Ed, and note that Nkn = NR where N 
is the number of atoms and N is the number of moles. 

5.3-9. Show, for the two-level system of Problem 5.3-8, that as the temperature 
increases from zero to infinity the energy increases from NEu to N(Eu + Ed)/2. 
Thus, at zero temperature all atoms are in their "ground state" (with energy Eu), 
and at infinite temperature the atoms are equally likely to be in either state. 
Energies higher than N(Eu + Ed)/2 are inaccessible in thermal equilibrium! (This 
upper bound on the energy is a consequence of the unphysical oversimplification 
of the model; it will be discussed again in Section 15.3.) 
Show that the Helmholtz potential of a mixture of simple ideal gases is the sum of 
the Helmholtz potentials of each individual gas: 
5.3-10. 
a) Show that the Helmholtz potential of a mixture of simple ideal gases is the 
sum of the Helmholtz potentials of each individual gas: 

F(T,V,N 1, ••• ,N,)=F(T,V,N 1)+ ··· +F(T,V,N,) 

Recall the fundamental equation of the mixture, as given in equation 3.40. 
An analogous additivity does not hold for any other potential expressed in terms of 
its natural variables. 
5.3-11. A mixture of two monatomic ideal gases is contained in a volume Vat 
temperature T. The mole numbers are N1 and N2 • Calculate the chemical 
potentials µ.1 and µ.2. Recall Problems 5.3-1 and 5.3-10. 

Assuming the system to be in contact with a reservoir of given T and µ.1, 

through a diathermal wall permeable to the first component but not to the second, 
calculate the pressure in the system. 
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5.3-12. A system obeys the fundamental relation 

(s - s0 )4 = Avu 2 

Calculate the Gibbs potential G(T, P, N). 
5.3-13. For a particular system it is found that 

u = (!)Pv 
and 

P = AvT 4 

Find a fundamental equation, the molar Gibbs potential, and the Helmholtz 
potential for this system. 
5.3-14. For a particular system (of 1 mole) the quantity (v + a)f is known to be 
a function of the temperature only ( = Y(T)). Here v is the molar volume, f is 
the molar Helmholtz potential, a is a constant, and Y(T) denotes an unspecified 
function of temperature. It is also known that the molar heat capacity cv is 

cv=b(v)Ti 
where b( v) is an unspecified function of v. 
a) Evaluate Y(T) and b(v). 
b) The system is to be taken from an initial state (T0 , v0 ) to a final state (~, v1 ). 
A thermal reservoir of temperature T,. is available, as is a reversible work source. 
What is the maximum work that can be delivered to the reversible work source? 
(Note that the answer may involve constants unevaluated by the stated condi-
tions, but that the answer should be fully explicit otherwise.) 

5-4 GENERALIZED MASSIEU FUNCTIONS 

Whereas the most common functions definable in terms of Legendre 
transformations are those mentioned in Section 5.3, another set can be 
defined by performing the Legendre transformation on the entropy rather 
than on the energy. That is, the fundamental relation in the form S = 
S( U, V, N 1, N2 , ••• ) can be taken as the relation on which the transforma-
tion is performed. Such Legendre transforms of the entropy were invented 
by Massieu in 1869 and actually predated the transforms of the energy 
introduced by Gibbs in 1875. We refer to the transforms of the entropy as 
Massieu functions, as distinguished from the thermodynamic potentials 
transformed from the energy. The Massieu functions will tum out to be 
particularly useful in the theory of irreversible thermodynamics, and they 
also arise naturally in statistical mechanics and in the theory of thermal 
fluctuations. Three representative Massieu functions are S[l/T], in which 
the internal energy is replaced by the reciprocal temperature as indepen-
dent variable; S[ P /T], in which the volume is replaced by P /T as 
independent variable; and S[l/T, P /T], in which both replacements are 
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made simultaneously. Clearly 

s[~]=s-~u=-; 

s[~]=s-~-v 
and 

s[! P]=s-!u_P·V= T'T T T 
G 
T 

(5.61) 

(5.62) 

(5.63) 

Thus, of the three, only S[P /T] is not trivially related to one of the 
previously introduced thermodynamic potentials. For this function 

S = S( U, V, N1, N2 , ••• ) 

P/T = as;av 
S[P /T] = S - (P /T)V 

Elimination of 
S and V yields S[ P /T] 

as a function of U, P /T, N1, N2 , .•• 

and 

S[P /T] = function of 
U, P /T, N1, N2 , ... , (5.64) 

- v = as[ P /T1/ ac P /T) (5.65) 
S = S[P/T] + (P/T)V(5.66) 

Elimination of 
S[P /T] and P /T yields 

S = S(U,V,N 1,N 2, ••• ) 

dS[P/T] = (1/T)dU- Vd(P/T}-(µ 1/T}dN 1 - 7, dN2 ••• 

(5.67) 
Other Massieu functions may be invented and analyzed by the reader as a 
particular need for them arises. 

PROBLEMS 

5.4-1. Find the fundamental equation of a monatomic ideal gas in the representa-
tion 

s[ ;. ~] 
Find the equations of state by differentiation of this fundamental equation. 
5.4-2. Find the fundamental equation of electromagnetic radiation (Section 3.6) 
a) in the representation S[l/T] 
b) in the representation S[ P /T) 
5.4-3. Find the fundamental equation of the ideal van der Waals fluid in the 
representation S[l/T]. Show that S[l/T] is equal to - FIT (recall that F was 
computed in Problem 5.3-2). 



6 
THE EXTREMUM PRINCIPLE 

IN THE LEGENDRE 
TRANSFORMED REPRESENTATIONS 

6-1 THE MINIMUM PRINCIPLES FOR THE POTENTIAlS 

We have seen that the Legendre transformation permits expression of 
the fundamental equation in terms of a set of independent variables 
chosen to be particularly convenient for a given problem. Clearly, how-
ever, the advantage of being able to write the fundamental equation in 
various representations would be lost if the extremum principle were not 
itself expressible in those representations. We are concerned, therefore, 
with the reformulation of the basic extremum principle in forms ap-
propriate to the Legendre transformed representations. 

For definiteness consider a composite system in contact with a thermal 
reservoir. Suppose further that some internal constraint has been removed. 
We seek the mathematical condition that will permit us to predict the 
equilibrium state. For this purpose we first review the solution of the 
problem by the energy minimum principle. 

In the equilibrium state the total energy of the composite system-plus-
reservmr 1s minimum: 

d(U + U,.) = 0 (6.1) 
and 

(6.2) 

subject to the isentropic condition 

d(S + S') = 0 (6.3) 
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The quantity d 2U' has been put equal to zero in equation 6-2 because 
d 2 U' is a sum of products of the form 

which vanish for a reservoir ( the coefficient varying as the reciprocal of the 
mole number of the reservoir)_ 

The other closure conditions depend upon the particular form of the 
internal constraints in the composite system. If the internal wall is 
movable and impermeable, we have 

dN/> = dN,(2) = d(v< 1> + v<2>) = 0 (for all 1) (6.4) 

whereas, if the internal wall is rigid and permeable to the k th component, 
we have 

d(N°> + N<2>) = dN°> = dN 12> = dv<1> = dv<2i = 0 k k J J 

These equations suffice to determine the equilibrium state. 

(1 * k) 

(6.5) 

The differential dU in equation 6.1 involves the terms T 11Jds0 > + 
T<2>ds12i, which arise from heat flux among the subsystems and the 
reservoir and terms such as _poidvo> - p<2idv< 2> and µ(l>dN(l 1 + ' /,. /,. 
µ~2> dNf>, which arise from processes within the composite system. The 
terms T<1ids< 1> + T<2ldS 12> combine with the term dU' = T'dS' in equa-
tion 6.1 to yield 

=0 (6.6) 

whence 

T<l) = T<2> = T' (6.7) 

Thus one evident aspect of the final equilibrium state is the fact that the 
reservoir maintains a constancy of temperature throughout the system. 
The remaining conditions of equilibrium naturally depend upon the 
specific form of the internal constraint~ in the composite system. 

To this point we have merely reviewed the application of the energy 
minimum principle to the composite system (the subsystem plus the 
reservoir). We are finally ready to recast equations 6.1 and 6.2 into the 
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language of another representation. We rewrite equation 6.1 

d(U + U') = dU + T'dS' = 0 (6.8) 

or, by equation 6.3 

dU- T'dS = 0 (6.9) 

or, further, since T' is a constant 

d(U- T'S)= 0 (6.10) 

Similarly, since T' is a constant and S is an independent variable, 
equation 6.2 implies 1 

( 6.11) 

Thus the quantity ( U - T'S) is minimum in the equilibrium state. Now 
the quantity U - T'S is suggestive by its form of the Helmholtz potential 
U - TS. We are therefore led to examme further the extremum properties 
of the quantity ( U - T'S) and to ask how these may be related to the 
extremum properties of the Helmholtz potential. We have seen that an 
evident feature of the equilibrium is that the temperature of the composite 
system (i.e., of each of its subsystems) is equal to T'. If we accept that 
part of the solution, we can 1mmed1ately restrict our search for the 
equilibrium state among the manifold of states for which T = T'. But 
over this manifold of states U - TS is identical to U - T'S. Then we can 
write equation 6.10 as 

dF = d(U - TS)= 0 (6.12) 

subject to the auxiliary condition that 

T= T' (6.13) 

That 1s, the equilibrium state mm1m1zes the Helmholtz potential, not 
absolutely, but over the manifold of states for which T = T'. We thus 
arrive at the equilibrium condition in the Helmholtz potential representa-
tion. 

Helmholtz Potential Minimum Principle. The equilihnum value of any 
unconstrained mternal parameter tn a system tn diathermal contact ~vlfh a 
heat reservmr minimizes the Helmholtz potential over the mamfold of states 
for which T = T'. 

1d 2 U represents the second-order terms m the expansion of l' m powers of dS, the hnear term 
- Trs m equauon 6 11 contnbutc~ to the expansion only m tir~t order (5.ec cqu..itton A Q of 
Appendix A) 
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The intuitive significance of this principle is clearly evident in equations 
6.8 through 6.10. The energy of the system plus the reservoir is, of course, 
minimum. But the statement that the Helmholtz potential of the system 
alone is minimum is just another way of saying this, for dF = d( V - TS), 
and the term d( - TS) actually represents the change in energy of the 
reservoir (since T = Tr and -dS = dSr). It is now a simple matter to 
extend the foregoing considerations to the other common representations. 

Consider a composite system in which all subsystems are in contact 
with a common pressure reservoir through walls nonrestrictive with re-
spect to volume. We further assume that some internal constraint within 
the composite system has been removed. The first condition of equi-
librium can be written 

d(U + U') = dV- P'dV' = dU + P'dV= 0 (6.14) 

or 

d(U + P'V) = 0 (6.15) 

Accepting the evident condition that P = P', we can write 

dH = d( U + PV) = 0 (6.16) 

subject to the auxiliary restriction 

p = pr ( 6.17) 

Furthermore, since P' is a constant and Vis an independent variable 

(6.18) 

so that the extremum is a minimum. 

Enthalpy Minimum Principle. The equilibrium value of any unconstrained 
internal parameter in a system in contact with a pressure reservoir minimizes 
the enthalpy over the manifold of states of constant pressure ( equal to that of 
the pressure ,:eservoir). 

Finally, consider a system in simultaneous contact with a thermal and a 
pressure reservoir. Again 

d( V + U') = dU - T' dS + P' dV = 0 (6.19) 

Accepting the evident conditions that T = T' and P = P', we can write 

dG = d(V - TS+ PV) = 0 (6.20) 
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subject to the auxiliary restrictions 

T= T' p = pr (6.21) 

Again 

(6.22) 

We thus obtain the equilibrium condition in the Gibbs representation. 

Gibbs Potential Minimum Principle. The equilibrium value of any uncon-
strained internal parameter in a system in contact with a thermal and a 
pressure reservoir minimizes the Gibbs potential at constant temperature and 
pressure ( equal to those of the respective reservoirs). 

If the system is characterized by other extensive parameters in addition 
to the volume and the mole numbers the analysis is identical in form and 
the general result is now clear: 

The General Minimum Principle for Legendre Transforms of the Energy. 
The equilibrium value of any unconstrained internal parameter in a system in 
contact with a set of reservoirs ( with intensive parameters P{, P{, ... ) 
minimizes the thermodynamic potential U[P 1, P2 , ••• ] at constant Pi, P2 , .•• 

( equal t~ P{, P{, ... ). 

6-2 THE HELMHOLTZ POTENTIAL 

For a composite system in thermal contact with a thermal reservoir the 
equilibrium state minimizes the Helmholtz potential over the manifold of 
states of constant temperature ( equal to that of the reservoir). In practice 
many processes are carried out in rigid vessels with diathermal walls, so 
that the ambient atmosphere acts as a thermal reservoir; for these the 
Helmholtz potential representation is admirably suited. 

The Helmholtz potential is a natural function of the variables 
T, V, Ni, N2 , •••• The condition that T is constant reduces the number of 
variables in the problem, and F effectively becomes a function only of the 
variables V and N1, N2 , •••. This is in marked contrast to the manner in 
which constancy of T would have to be handled in the energy representa-
tion: there U would be a function of S, V, N1, N2 , ..• but the auxiliary 
condition T = T' would imply a relation among these variables. Particu-
larly in the absence of explicit knowledge of the equation of state 
T = T(S, V, N) this auxiliary restriction would lead to considerable awk-
wardness in the analytic procedures in the energy representation. 

As an illustration of the use of the Helmholtz potential we first consider 
a composite system composed of two simple systems separated by a 
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"Hotplate", T' 

FIGURE6.l 

movable, adiabatic, impermeable wall (such as a solid insulating piston). 
The subsystems are each in thermal contact with a thermal reservoir of 
temperature T' (Fig. 6.1 ). The problem, then, is to predict the volumes y\t) 
and V(2) of the two subsystems. We write 

This is one equation involving the two variables v<1> and v<2>; all other 
arguments are constant. The closure condition 

v<1> + v<2> = V, a constant (6.24) 

provides the other required equation, permitting explicit solution for v<1> 
and v<2>. 

In the energy representation we would also have found equality of the 
pressures, as in equation 6.23, but the pressures would be functions of the 
entropies, volumes, and mole numbers. We would then require the equa-
tions of state to relate the entropies to the temperature and the volumes; 
the two simultaneous equations, 6.23 and 6.24, would be replaced by four. 

Although this reduction of four equations to two may seem to be a 
modest achievement, such a reduction is a very great convenience in more 
complex situations. Perhaps of even greater conceptual value is i:he fact 
that the Helmholtz representation permits us to focus our thought 
processes exclusively on the subsystem of interest, relegating the reservoir 
only to an implicit role. And finally, for technical mathematical reasons to 
be elaborated in Chapter 16, statistical mechanical calculations are enor-
mously simpler in Helmholtz representations, permitting calculations that 
would otherwise be totally intractable. 

For a system in contact with a thermal reservoir the Helmholtz poten-
tial can be interpreted as the available work at constant temperature. 
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Consider a system that interacts with a reversible work source while being 
in thermal contact with a thermal reservoir. In a reversible process the 
work input to the reversible work source is equal to the decrease in energy 
of the system and the reservoir 

dWRws = -du - dU' = -du - T'dS' 

-dU + T'dS = -d(U - T'S) 

-dF 

(6.25) 

(6.26) 

(6.27) 

Thus the work delivered in a reversible process, by a system in contact with a 
thermal reservoir, is equal to the decrease in the Helmholtz potential of the 
syste,;,t. The Helmholtz potential is often referred to as the Helmholtz 
"free energy," though the term available work at constant temperature 
would be less subject to misinterpretation. 

Example 1 
A cylinder contains an internal piston on each side of which is one mole of a 
monatomic ideal gas. The walls of the cylinder are diathermal, and the system is 
immersed in a large bath of liquid (a heat reservoir) at temperature 0°C. The 
initial volumes of the two gaseous subsystems (on either side of the piston) are 10 
liters and 1 liter, respectively. The piston is now moved reversibly, so that the 
final volumes are 6 liters and 5 liters, respectively. How much work is delivered? 

Solution 
As the reader has shown in Problem 5.3-1, the fundamental equation of a 
monatomic ideal gas in the Helmholtz potential representation is 

{ F0 [( T ) 312 V ( N )- t]} F = NRT NoRTo - In To Vo No 

At constant T and N this is simply 
F = constant - NRT In V 

The change in Helmholtz potential is 
AF= -NRT[ln6+ln5-ln10-lnl]= -NRTln3= -2.5kJ 

Thus 2.5 kJ of work are delivered in this process. 
It is interesting to note that all of the energy comes from the thermal reservoir. 

The energy of a monatomic ideal gas is simply fNRT and therefore it is constant 
at constant temperature. The fact that we withdraw heat from the temperature 
reservoir and deliver it entirely as work to the reversible work source does not, 
however, violate the Carnot efficiency principle because the gaseous subsystems 
are not left in their initial state. Despite the fact that the energy of these 
subsystems remains constant, their entropy increases. 
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PROBLEMS 

6.2-1. Calculate the pressure on each side of the internal piston in Example 1, for 
arbitrary position of the piston. By integration then calculate the work done in 
Example 1 and corroborate the result there obtained. 
6.2-2. Two ideal van der Waals fluids are contained in a cylinder, separated by an 
internal moveable piston. There is one mole of each fluid, and the two fluids have 
the same values of the van der Waals constants b and c; the respective values of 
the van der Waals constant "a" are a 1 and a2 • The entire system is in contact 
with a thermal reservoir of temperature T. Calculate the Helmholtz potential of 
the composite system as a function of T and of the total volume V. If the total 
volume is doubled (while allowing the internal piston to adjust), what is the work 
done by the system? Recall Problem 5.3-2. 
6.2-3. Two subsystems are contained within a cylinder and are separated by an 
internal piston. Each subsystem is a mixture of one mole of helium gas and one 
mole of neon gas (each to be considered as a monatomic ideal gas). The piston is 
in the center of the cylinder, each subsystem occupying a volume of 10 liters. The 
walls of the cylinder are diathermal, and the system is in contact with a thermal 
reservoir at a temperature of 100°C. The piston is permeable to helium but 
impermeable to neon. 

Recalling (from Problem 5.3-10) that the Helmholtz potential of a mixture of 
simple ideal gases is the sum of the individual Helmholtz potentials (each 
expressed as a function of temperature and volume), show that in the present case 

T 3 T ( V N0 ) F= N-fc - -NRTln- - N RTln --
To o 2 To i Vo Ni 

vo>N. v<2>N. 
-N< 1>RTln-- 0 - N<2>RTln-- 0 

2 V. No> 2 V. N<2> 
0 2 0 2 

where T0 , / 0 , V0 , and N0 are attributes of a standard state (recall Problem 5.3-1), 
N is the total mole number, Np> is the mole number of neon (component 2) in 
subsystem 1, and vo> and VC2> are the volumes of subsystems 1 and 2, respec-
tively. 

How much work is required to push the piston to such a position that the 
volumes of the subsystems are 5 liters and 15 liters? Carry out the calculation 
both by calculating the change in F and by a direct integration ( as in Problem 
6.2-1). 

6-3 THE ENTHALPY: THE 

Answer: 
work = RT ln(n = 893 J 

JOULE-THOMSON OR '"THROTILING" PROCESS 

For a composite system in interaction with a pressure reservoir the 
equilibrium state minimizes the enthalpy over the manifold of states of 
constant pressure. The enthalpy representation would be appropriate to 
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processes carried out in adiabatically insulated cylinders fitted with adia-
batically insulated pistons subject externally to atmospheric pressure, but 
this is not a very common experimental design. In processes carried out in 
open vessels, such as in the exercises commonly performed in an elemen-
tary chemistry laboratory, the ambient atmosphere acts as a pressure 
reservoir, but it also acts as a thermal reservoir: for the analysis of such 
processes only the Gibbs representation invokes the full power of Legendre 
transformations. Nevertheless, there are particular situations uniquely 
adapted to the enthalpy representation, as we shall see shortly. 

More immediately evident is the interpretation of the enthalpy as a 
"potential for heat." From the diffe[eritial form 

(6.28) 

it is evident that for a system in contact with a pressure reservoir and 
enclosed by impermeable walls 

dH=dQ (where P, N1 , Ni, ... are constant) (6.29) 

That is, heat added to a system at constant pressure and at constant values of 
all the remaining extensive parameters ( other than S and V) appears as an 
increase in the enthalpy. 

This statement may be compared to an analogous relation for the 
energy 

dV= dQ (where V, N1, Ni, ... are constant) (6.30) 

and similar results for any Legendre transform in which the entropy is not 
among the transformed variables. 

Because heating of a system is so frequently done while the system is 
maintained at constant pressure by the ambient atmosphere, the enthalpy 
is generally useful in discussion of heat transfers. The enthalpy accord-
ingly is sometimes referred to as the "heat content" of the system (but it 
should be stressed again that "heat'' refers to a mode of energy flux 
rather than to an attribute of a state of a thermodynamic system). 

To illustrate the significance of the enthalpy as a "potential for heat," 
suppose that a system is to be maintained at constant pressure and its 
volume is to be changed from V, to J.:r. We desire to compute the heat 
absorbed by the system. As the pressure is constant, the heat flux is equal 
to the change in the enthalpy 

(6.31) 

If we were to know the fundamental equation 

H = H(S,P,N) (6.32) 



162 The Extremum Principle m the Legendre Transformed Representations 

then, by differentiation 

aH V = a p = V( S, P, N) (6.33) 

and we could eliminate the entropy to find H as a function of V, P, and 
N. Then 

Q, __ 1 = H(V1 ,P,N)-H(V,,P,N) (6.34) 

A process of great practical importance, for which an enthalpy repre-
sentation is extremely convenient, is the Joule-Thomson or "throttling" 
process. This process is commonly used to cool and liquify gases and as a 
second-stage refrigerator in "cryogenic" (low-temperature) laboratories. 

In the Joule- Thomson process or "Joule- Kelvin" process (William 
Thomson was only later granted peerage as Lord Kelvin) a gas is allowed 
to seep through a porous barrier from a region of high pressure to a region 
of low pressure (Fig. 6.2). The porous barrier or "throttling valve" was 
originally a wad of cotton tamped into a pipe; in a laboratory demonstra-
tion it is now more apt to be glass fibers, and in industrial practice it is 
generally a porous ceramic termination to a pipe (Fig. 6.3). The process 
can be made continuous by using a mechanical pump to return the gas 
from the region of low pressure to the region of high pressure. Depending 
on certain conditions, to be developed in a moment, the gas is either 
heated or cooled in passing through the throttling valve. 

FIGURE6.2 
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SchematiF representation of the Joule-Thomson process. 
I 

For real gases and for given initial and final pressures, the change in 
temperature is generally positive down to a particular temperature, and it 
is negative below that temperature. The temperature at which the process 
changes from a heating to a cooling process is called the inversion 
temperature; it depends upon the particular gas and upon both the initial 
and final pressures. In order that the throttling process operate as an 
effective cooling process the gas must first be precooled below its inversion 
temperature. 

To show that the Joule-Thomson process occurs at constant enthalpy 
consider one mole of the gas undergoing a throttling process. The piston 
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~----, Pump 

Gas 

FIGURE6.3 
Schematic apparatus for liquefaction of a gas by throttling process. The pump maintains 
the pressure difference (Prugh - P10w)- The spherical termination of the high pressure pipe 
is a porous ceramic shell through which the gas expands in the throttling process. 

(Fig. 6.2) that pushes this quantity of gas through the plug does an 
amount of work P,v,, in which v, is the molar volume of the gas on the 
high pressure side of the plug. As the gas emerges from the plug, it does 
work on the piston that maintains the low pressure P1, and this amount of 
work is P1vf" Thus the conservation of energy determines the final molar 
energy of tlie gas; it is the initial molar energy, plus the work P,v, done on 
the gas, minus the work P1v1 done by the gas. 

(6.35) 

or 

(6.36) 

which can be written in terms of the molar enthalpy h as 

(6.37) 

Although, on the basis of equation 6.37, we say that the Joule-
Thomson process occurs at constant enthalpy, we stress that this simply 
implies that the final enthalpy is equal to the initial enthalpy. We do not 
imply anything about the enthalpy during the process; the intermediate 
states of the gas are nonequilibrium states for which the enthalpy is not 
defined. 

The isenthalpic curves ("isenthalps") of nitrogen are shown in Fig. 6.4 
The initial temperature and pressure in a throttling process determine a 
particular isenthalp. The final pressure then determines a point on this 
same isenthalp, thereby determining the final temperature. 
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lsenthalps (solid), inversion temperature (dark), and coexistence curve for nitrogen; 
semiquantitative. 

The isenthalps in Fig. 6.4 are concave, with maxima. If the initial 
temperature and pressure lie to the left of the maximum the throttling 
process necessarily cools the gas. If the initial temperature lies to the right 
of the maximum a small pressure drop heats the gas (though a large 
pressure drop may cross the maximum and can either heat or cool the 
gas). The maximum of the isenthalp therefore determines the inversion 
temperature, at which a small pressure change neither heats nor cools the 
gas. 

The dark curve in Fig. 6.4 is a plot of inversion temperature as a 
function of pressure, obtained by connecting the maxima of the isenthalpic 
curves. Also shown on the figure is the curve of liquid-gas equilibrium. 
Points below the curve are in the liquid phase and those above are in the 
gaseous phase. This coexistence curve terminates in the "critical point." In 
the region of this point the "gas" and the "liquid" phases lose their 
distinguishability, as we shall study in some detail in Chapter 9. 

If the change in pressure in a throttling process is sufficiently small we 
can employ the usual differential analysis. 

(6.38) 

The derivative can be expressed in terms of standard measurable quanti-
ties ( c P' a, KT) by a procedure that may appear somewhat complicated on 
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first reading, but that will be shown in Chapter 7 to follow a routine and 
straightforward recipe. By a now familiar mathematical identity (A.22), 

(6.39) 

where we suppress the subscripts N1, N2 , ... for simplicity, noting that the 
mole numbers remain constant throughout. However, dH = T dS + V dP 
at constant mole numbers, so that 

d _ T(iJSjiJP)T + V dP 
T- - fl.. as;aT)p (6.40) 

The denominator is Ncp. The derivative( iJS/iJPh is equal to -( av /iJT)p 
by one of the class of "Maxwell relations," analogous to equations 3.62 or 
3.65 (in the present case the two derivatives can be corroborated to be the 
two mixed second derivatives of the Gibbs potential). Identifying 
( iJS/iJPh = -( iJV/iJT)p = - Va (equation 3.67) we finally find 

dT = _!!_(Ta - 1) dP (6.41) 
Cp 

This is a fundamental equation of the Joule-Thomson effect. As the 
change in pressure dP is negative, the sign of dT is opposite that of the 
quantity in parentheses. Thus if Ta > 1, a small decrease in pressure (in 
transiting the" throttling valve") cools the gas. The inversion temperature 
is determined by 

aTmvers1on = 1 (6.42) 

For an ideal gas the coefficient of thermal expansion a is equal to l/T, 
so that there is no change in temperature in a Joule-Thomson expansion. 
All gases approach ideal behavior at high temperature and low or mod-
erate pressure, and the isenthalps correspondingly become "flat," as seen 
in Fig. 6.4. It is left to Example 2 to show that for real gases the 
temperature change is negative below the inversion temperature and 
positive above, and to evaluate the inversion temperature. 

Example 2 
Compute the inversion temperature of common gases, assuming them to be 
described by the van der Waals equation of state (3.41). 

Solution 
We must first evaluate the coefficient of expansion a. Differentiating the van der 
Waals equation of state (3.41) with respect to T, at constant P 

a= .!(.E.!!._) =[_I!!____ 2a(u - b) ]-I 
u aT P u - b Ru 2 
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To express the right-hand side as a function of T and P is analytically difficult. 
An approximate solution follows from the recognition that molar volumes are on 
the order of0.02 m3,1 whence b/vis on the order of 10-3 and a/RT vis on the order 
of 10- 3 - 10- 4 (see Table 3.1). Henceaseriesexpansioninb/vanda/RTvcan 
reasonably be terminated at the lowest order term. Let 

b _ a 
E1 = v Ez = RTv 

Then 

[ T 2T 1-• a= -- - -(v-b)E 2 1 - E1 V 

=i [ 1 ~El -2(1 - E1)E2J-I 

Returning to equation 6.41 

from which we recall that 
dT = J!... (Ta. - 1) dP 

cP 

Tmv. a.= 1 

It then follows that at the inversion temperature 

[1 - E1 + 2£2 + · · ·] = 1 

or 

The inversion temperature is now determined by 
2a 

Tmv ,=: bR 

with cooling of the gas for temperature below Tinv• and heating above. From 
Table"' 3.1, we compute the inversion temperature of several gases: Tm.(H2 ) = 224 
K, Tinv(Ne) = 302 K, Tmv<N2) = 850 K, Tinv(02) = 1020 K, Tmv(C02) = 2260 
K. In fact the inversion temperature empirically depends strongly on the pressure 
-a dependence lost in our calculation by the neglect of higher-order terms. The 
observed inversion temperature at zero pressure for H 2 is 204 K, and for neon it 
is 228 K-in fair agreement with our crude calculation. For polyatomic gases the 
agreement is less satisfactory; the observed value for CO2 is 1275 K whereas we 
have computed 2260 K. 

PROBLEMS 

6.3-1. A hole is opened in the wall separating two chemically identical single-
component subsystems. Each of the subsystems is also in interaction with a 
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pressure reservoir of pressure pr_ Use the enthalpy minimum principle to show 
that the conditions of equilibrium are T<1> = T<2> and p.<1> = p.(2). 
6.3-2. A gas has the following equations of state 

u P= -
V 

( ui )I/3 
T=3B -NV 

where B is a positive constant. The system obeys the Nernst postulate ( S -+ O as 
T -+ 0). The gas, at an initial teperature T, and initial pressure P,, is passed 
through a "porous plug" in a Joul~- Thomson process. The final pressure is P1. 
Calculate the final temperature 7t. l 
6.3-3. Show that for an ideal van der Waals fluid 

h = - 20 + RT(c + _v_) 
V v-b 

where h is the molar enthalpy. Assuming such a fluid to be passed through a 
porous plug and thereby expanded from v, to v1 (with v1 > v,), find the final 
temperature 7t in terms of the initial temperature T, and the given data. 

Evaluate the temperature change if the gas is CO2, the mean temperature is 
0°C, the mean pressure is 107 Pa, and the change in pressure is 106 Pa. The molar 
heat capacity cp of CO2 at the relevant temperature and pressure is 29.5 
J/mole-K. Carry calculation only to first order in blv and a!RTv. 
6.3-4. One mole of a monatomic ideal gas is in a cylinder with a movable piston 
on the other side of which is a pressure reservoir with P, = 1 atm. How much 
heat must be added to the gas to increase its volume from 20 to 50 liters? 
6.3-5. Assume that the gas of Problem 6.3-4 is an ideal van der Waals fluid with 
the van der Waals constants of argon (Table 3-1), and again calculate the heat 
required. Recall Problem 6.3-3. 

6-4 THE GIBBS POTENTIAL; CHEMICAL REACTIONS 

For a composite system in interaction with both thermal and pressure 
reservoirs the equilibrium state minimizes the Gibbs potential over the 
manifold of states of constant temperature and pressure ( equal to those of 
the reservoirs). 

The Gibbs potential is a natural function of the variables 
T, P, N 1, N2 , ••. , and it is particularly convenient to use in the analysis of 
problems involving constant T and P. Innumerable processes of common 
experience occur in systems exposed to the atmosphere, and thereby 
maintained at constant temperature and pressure. And frequently a pro-
cess of interest occurs in a small subsystem of a larger system that acts as 
both a thermal and a pressure reservoir (as in the fermentation of a grape 
in a large wine vat). 

The Gibbs potential of a multicomponent system is related to the 
chemical potentials of the individual components, for G = V - TS+ PV, 


