
2 
THE CONDITIONS 
OF EQUILIBRIUM 

2-1 INTENSIVE PARAMETERS 

By virtue of our interest in processes, and in the associated changes of 
the extensive parameters, we anticipate that we shall be concerned with 
the differential form of the fundamental equation. Writing the fundamen-
tal equation in the form 

U = U(S, V, N1, N2 , ••• , N,) (2.1) 

we compute the first differential: 

( au) ( au) ' ( au ) dU = - dS + - dV + L - d~ as v.N 1 ..... N, av s.N, .... N, j-i aN1 s.v •.. N, 

(2.2) 

The various partial derivatives appearing in the foregoing equation recur 
so frequently that it is convenient to introduce special symbols for them. 
They are called intensive parameters, and the following notation is conven-
tional: 

( aaUS ) = T, the temperature 
V,N 1,. ,N, 

(2.3) 

- ( = P, the pressure 
S,N 1 •• ,N, 

(2.4) 

( au ) = the electrochemical potential of 
aN - µ1, thejth component 

J S,V •. ,Nk,. 

(2.5) 

35 
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With this notation, equation 2.2 becomes 

(2.6) 

The formal definition of the temperature soon will be shown to agree 
with our intuitive qualitative concept, based on the physiological sensa-
tions of "hot" and "cold." We certainly would be reluctant to adopt a 
definition of the temperature that would contradict such strongly en-
trenched although qualitative notions. For the moment, however, we 
merely introduce the concept of temperature by the formal definition 
(2.3). 

Similarly, we shall soon corroborate that the pressure defined by 
equation 2.4 agrees in every respect with the pressure defined in mecha-
nics. With respect to the several electrochemical potentials, we have no 
prior definitions or concepts and we are free to adopt the definition 
(equation 2.5) forthwith. 

For brevity, the electrochemical potential is often referred to simply 
as the chemical potential, and we shall use these two terms interchangea-
bly1. 

The term - P dV in equation 2.6 is identified as the quasi-static work 
dWM, as given by equation I.I. 

In the special case of constant mole numbers equation 2.6 can then be 
written as 

TdS = dU-dWM (2.7) 

Recalling the definition of the quasi-static heat, or comparing equation 2.7 
with equation 1.2, we now recognize T dS as the quasi-static heat flux. 

dQ = TdS (2.8) 

A quasi-static flux of heat into a system is associated with an increase of 
entropy of that system. 

The remaining terms in equation 2.6 represent an increase of internal 
energy associated with the addition of matter to a system. This type of 
energy flux, although intuitively meaningful, is not frequently discussed 
outside thermodynamics and does not have a familiar distinctive name. 
We shall call E 1µ 1 d~ the quasi-static chemical work. 

(2.9) 

1 However it should be noted that occasionally, and particularly in the theory of solids, the 
"chemical potential" is defined as the electrochemical potential p. mirr be molar electrostatic 
energy. 
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Therefore 

dU = dQ + dW M + dWC (2.10) 

Each of the terms TdS,- PdV, µ 1 d~, in equation 2.6 has the dimen-
sions of energy. The matter of units will be considered in Section 2.6. We 
can observe here, however, that having not yet specified the units (nor 
even the dimensions) of entropy, the units and dimensions of temperature 
remain similarly undetermined. The units of µ are the same as those of 
energy (as the mole numbers are dimensionless). The units of pressure are 
familiar, and conversion factors are listed inside the back cover of this 
book. 

2-2 EQUATIONS OF STATE 

The temperature, pressure, and electrochemical potentials are partial 
derivatives of functions of S, V, N1, ••• , Nr and consequently are also 
functions of S, V, N 1, ••• , Nr. We thus have a set of functional relation-
ships 

(2.11) 

P = P(S,V,N 1, ••• ,NJ {2.12) 

(2.13) 

Such relationships, expressing intensive parameters in terms or" the inde-
pendent extensive parameters, are called equations of state. 

Knowledge of a single equation of stale does not constitute complete 
knowledge of the thermodynamic properties of a system. We shall see, 
subsequently, that knowledge of all the equations of state of a system is 
equivalent to knowledge of the fundamental equation and consequently is 
thermodynamically complete. 

The fact that the fundamental equation must be homogeneous first 
order has direct implications for the functional form of the equations of 
state. It follows immediately that the equations of stale are homogeneous 
zero order. That is, multiplication of each of the independent extensive 
parameters by a scalar 'A leaves the function unchanged. 

(2.14) 
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It therefore follows that the temperature of a portion of a system is 
equal to the temperature of the whole system. This is certainly in agree-
ment with the intuitive concept of temperature. The pressure and the 
electrochemical potentials also have the property (2.14), and together with 
the temperature are said to be intensive. 

To summarize the foregoing considerations it is convenient to adopt a 
condensed notation. We denote the extensive parameters V, N1, .•• , Nr by 
the symbols X1, X2 , ••• , X,, so that the fundamental relation takes the 
form 

U = U(S, Xi, X 2 , ••• , XJ 

The intensive parameters are denoted by 

( aaus) = r = r(s, x1, x2 , .•• , x,) 
X1 .X 2 , 

whence 
I 

dU = TdS + L PjdXJ 
1=l 

(2.15) 

(2.16) 

j=l,2, ... ,t (2.17) 

(2.18) 

It should be noted that a negative sign appears in equation 2.4, but does 
not appear in equation 2.17. The formalism of thermodynamics is uniform 
if the negative pressure, - P, is considered as an intensive parameter 
analogous to T and µ1, µ 2 ,.. • • Correspondingly one of the general 
in tensive parameters of equation 2.17 is - P. 

For single-component simple systems the energy differential is fre-
quently written in terms of molar quantities. Analogous to equations 1.11 
through 1.15, the fundamental equation per mole is 

u = u(s,v) (2.19) 

where 

s = S/N, V = V/N (2.20) 

and 

1 
u(s, v) = N U(S, V, N) (2.21) 
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Taking an infinitesimal variation of equation 2.19 

au au du =-ds +-dv as av (2.22) 

However 

(au) _ (au) _ (au) _ T as v - as V,N - as V,N -
(2.23) 

and similarly 

{2.24) 

Thus 

du= Tds - Pdv (2.25) 

PROBLEMS 

2.2-1. Find the three equations of state for a system with the fundamental 
equation 

U= (vofl)£ 
R2 NV 

Corroborate that the equations of state are homogeneous zero order (i.e., that T, 
P, and µ are intensive parameters). 
2.2-2. For the system of problem 2.2-1 findµ as a function of T, V, and N. 
2.2-3. Show by a diagram (drawn to arbitrary scale) the dependence of pressure 
on volume for fixed temperature for the system of problem 2.2-1. Draw two such 
"isotherms," corresponding to two values of the temperature, and indicate which 
isotherm corresponds to the higher temperature. 
2.2-4. Find the three equations of state for a system with the fundamental 
equation 

and show that, for this system,µ, = - u. 
2.2-5. Express µ as a function of T and P for the system of problem 2.2-4. 
2.2-6. Find the three equations of state for a system with the fundamental 
equation 
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2.2-7. A particular system obeys the relation 

u = Av 2exp(s/R) 

N moles of this substance, initially at temperature Ti.i and pressure P0 , are 
expanded isentropically (s = constant) until the pressure is halved. What is the 
final temperature? 

Answer: 
1j = 0.63 T0 

2.2-8. Show that, in analogy with equation 2.25, for a system with r components 

r 1 

du= Tds - Pdv + [ (µ1 - µ,)dx 1 
1=1 

where the x1 are the mole fractions(= ~/N). 
2.2-9. Show that if a single-component system is such that PV" is constant in an 
adiabatic process (k is a positive constant) the energy is 

where / is an arbitrary function. 

Hint: PV" must be a function of S, so that ( au /8V)s = g(S) · v-", where g(S) 
is an unspecified function. 

2-3 ENTROPIC INTENSIVE PARAMETERS 

If, instead of considering the fundamental equation in the form U = 
U(S, ... , X1 , ••• ) with U as dependent, we had considered S as depen-
dent, we could have carried out all the foregoing formalism in an inverted 
but equivalent fashion. Adopting the notation X0 for U. we write 

S = S( X0 , X 1, ••• , X,) (2.26) 

We take an infinitesimal variation to obtain 

1 as 
dS = :E ax dX" 

k=O I.. 
(2.27) 
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The quantities as I a xk are denoted by Fk. 

(2.28) 

By carefully noting which variables are kept constant in the vanou~ partial 
derivatives (and by using the calculus of partial derivatives as reviewed in 
Appendix A) the reader can demonstrate that 

1 
Fo = T' (k = 1,2,3, ... ) (2.29) 

These equations also follow from solving equation 2.18 for dS and 
comparing with equation 2.27. 

Despite the close relationship between the F,, and the P,,, there is a very 
important difference in principle. Namely, the P,.. are obtained by dif-
ferentiating a function of S, ... , X1 , ••• and are considered as functions 
of these variables, whereas the Fk are obtained by differentiating a 
function of U, . .. , X1,.. . and are considered as functions of these latter 
variables. That is, in one case the entropy is a member of the set of 
independent parameters, and in the second case the energy is such a 
member. In performing formal manipulations in thermodynamics it is 
extremely important to make a definite commitment to one or the other of 
these choices and to adhere rigorously to that choice. A great deal of 
confusion results from a vacillation between these two alternatives within 
a single problem. 

If the entropy is considered dependent and the energy independent, as 
in S = S( U, ... , Xk, ... ), we shall refer to the analysis as being in the 
entropy representation. If the energy is dependent and the entropy is 
independent, as in U = U( S, ... , X", ... ), we shall refer to the analysis as 
being in the energy representation. 

The formal development of thermodynamics can be carried out in either 
the energy or entropy representations alone, but for the solution of a 
particular problem either one or the other representation may prove to be 
by far the more convenient. Accordingly, we shall develop the two 
representations in parallel, although a discussion presented in one repre-
sentation generally requires only a brief outline in the alternate represen-
tation. 

The relation S = S( X0 , •.. , X1 , ••• ) is said to be the entropic fundamen-
tal relation, the set of variables X0 , ••• , X1 ,... is called the entropic 
extensive parameters, and the set of variables F;1, ••• , •••• is called the 
entropic intensive parameters. Similarly, the relation U = U(S, X 1 

, ... , X1 , •.• ) is said to be the energetic fundamental relation; the set of 
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variables S, X1, ••. , ~' ••• is called the energetic extensive parameters; 
and the set of variables T, P 1, ••• , ••.• is called the energetic intensive 
parameters. 

PROBLEMS 

2.3-1. Find the three equations of state in the entropy representation for a system 
with the fundamental equation 

u = ( d/20) s5/l 
RJ/2 v1;2 

Answer 

1 2 ( vl(lfJ )- 2/5 vt/5 
-=- -- --T 5 R3;2 u3f5 

J!:.. = - 1_ U2/S 1/) ( 
1/2(} )- 2/5 

T 5 R312 V 

2.3-2. Show by a diagram (drawn to arbitrary scale) the dependence of tempera 
ture on volume for fixed pressure for the system of problem 2.3-1. Draw two such 
"isobars" corresponding to two values of the pressure, and indicate which isobar 
corresponds to the higher pressure. 
2.3-3. Find the three equations of state in the entropy representation for a system 
with the fundamental equation 

u = ( ! ) sie - v, /v~ 

2.3-4. Consider the fundamental equation 
S = AUnvmN' 

where A is a positive constant. Evaluate the permissible values of the three 
constants n, m, and r if the fundamental equation is to satisfy the thermody-
namic postulates and if. in addition, we wish to have P increase with U /V, at 
constant N. (This latter condition is an intuitive substitute for stability require-
ments to be studied in Chapter 8.) For definiteness, the zero of energy is to be 
taken as the energy of the zero-temperature state. 
2.3-5. Find the three equations of state for a system with the fundamental 
relation 



Thermal Equ1l,hr,um- Temperature 43 

0 ) Show that the equations of state in entropy representation are homogeneous 
zero-order functions. 
b) Show that the temperature is intrinsically positive. 
c) Find the "mechanical equation of state" P = P(T, v). 

d) Find the form of the adiabats in the P-v plane. (An "adiabat" is a locus of 
constant entropy, or an "isentrope"). 

2-4 THERMAL EQUILIBRIUM- TEMPERATURE 

We are now in a position to illustrate several interesting implications of 
the extremum principle which has been postulated for the entropy. 
Consider a closed composite system consisting of two simple systems 
separated by a wall that is rigid and impermeable to matter but that does 
allow the flow of heat. The volumes and mole numbers of each of the 
simple systems are fixed, but the energies u<1> and u<2> are free to change, 
subject to the conservation restriction 

uoi + U(2) = constant (2.30) 

imposed by the closure of the composite system as a whole. Assuming that 
the system has come to equilibrium, we seek the values of U(1> and U(2). 
According to the fund~mental postulate, the values of u 0 > and U(2) are 
such as to maxinuze the entropy. Therefore, by the usual mathematical 
condition for an extremum, it follows that in the equilibrium state a 
virtual infinitesimal transfer of energy from system I to system 2 will 
produce no change in the entropy of the whole system. That is, 

dS = O (2.31) 

The additivity of the entropy for the two subsystems gives the relation 

s = so>( uo>, v(l), ... , ~o>, ... ) + s(2)( u(2), v<i>, ... , ~12>, ... ). 

(2.32) 

As u<1> and U(2) are changed by the virtual energy transfer, the entropy 
change is 

( as<1>) dS- --au0> vu>, N(I) . , . 
( as(2)) 

dU 11>+ --au(2) v<21• 
(2.33) 

N<'I • J • 
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or, employing the definition of the temperature 

dS = - 1- dU 0 > + - 1- dU<2> r<ll r<2> (2.34) 

By the conservation condition ( equation 2.30), we have 

(2.35) 

whence 

dS = (- 1- - - 1-) du 0 > r<l> r<2> (2.36) 

The condition of equilibrium (equation 2.31) demands that dS vanish for 
arbitrary values of dU( 1>, whence 

(2.37) 

This is the condition of equilibrium. If the fundamental equations of each 
of the subsystems were known, then 1/T<ll would be a known function of 
u<1> (and of v(l> and Np>, ... , which, however, are merely constants). 
Similarly, I/T( 2> would be a known function of u<2>, and the equation 
1;r< 1> = 1;r< 2> would be one equation in u<1> and u<2>. The conserva-
tion condition U(l) + U(2) = constant provides a second equation, and 
these two equations completely determine, in principle, the values of uo> 
and of U(2). To proceed further and actually to obtain the values of uo> 
and U(2) would require knowledge of the explicit forms of the fundamen-
tal equations of the systems. In thermodynamic theory, however, we 
accept the existence of the fundamental equations, but we do not assume 
explicit forms for them, and we therefore do not obtain explicit answers. 
In practical applications of thermodynamics the fundamental equations 
may be known, either by empirical observations (in terms of measure-
ments to be described later) or on the basis of statistical mechanical 
calculations based on simple models. In this way applied thermodynamics 
is able to lead to explicit numerical answers. 

Equation 2.37 could also be written as r 0 > = T(2). We write it in the 
form 1;r< 1> = 1;r< 2> to stress the fact that the analysis is couched in the 
entropy representation. By writing I/To>, we indicate a function of 
u 0 >, v0 >, ... , whereas ro> would imply a function of so>, v(l>, .... The 
physical significance of equation 2.37, however, remains the equality of the 
temperatures of the two subsystems. 

A second phase of the problem is the investigation of the stability of the 
predicted final state. In the solution given we have not exploited fully the 
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basic postulate that the entropy 1s a maximum in equilibrium; rather, we 
merely have investigated the consequences of the fact that it is an 
extremum. The condition that it be a maximum requires, in addition to 
the condition dS = 0, that 

(2.38) 

The consequences of this condition lead to considerations of stability, to 
which we shall give explicit attention in Chapter 8. 

2-5 AGREEMENT WITH 
INTUITIVE CONCEPT OF TEMPERATURE 

In the foregoing example we have seen that if two systems are separated 
by a diathermal wall, heat will flow until each of the system attains the 
same temperature. This prediction is in agreement with our intuitive 
notion of temperature, and it is the first of several observations that 
corroborate the plausibility of the formal definition of the temperature. 

Inquiring into the example in slightly more detail, we suppoie that the 
two subsystems initially are separated by an adiabatic wall and that the 
temperatures of the two subsystems are almost, but not quite, equal. In 
particular we assume that 

(2.39) 

The system is considered initially to be in equilibrium with respect to the 
internal adiabatic constraint. If the internal adiabatic constraint now is 
removed, the system is no longer in equilibrium, heat flows across the 
wall, and the entropy of the composite system increases. Finally the 
system comes to a new equilibrium state, determined by the condition that 
the final values of ro> and r<2> are equal, and with the maximum possible 
value of the entropy that is consistent with the remaining constraints. 
Compare the initial and the final states. If AS denotes the entropy 
difference between the final and initial states 

AS> O (2.40) 

But, as in equation 2.36, 

AS ""' ( _!_ - - 1-) Auo, r<I> r<2> {2.41) 

where r<1> and r<2> are the initial values of the temperatures. By the 
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condition that T(l) > r<2>, it follows that 

~u<1> < o (2.42) 

This means that the spontaneous process that occurred was one in which 
heat flowed from subsystem I to subsystem 2. We conclude therefore that 
heat tends to flow from a system with a high value of T to a system with a 
low value of T. This is again in agreement with the intuitive notion of 
temperature. It should be noted that these conclusions do not depend on 
the assumption that r<1> is approximately equal to r<2>; this assumption 
was made merely for the purpose of obtaining mathematical simplicity in 
equation 2.41, which otherwise would require a formulation in terms of 
integrals. 

If we now take stock of our intuitive notion of temperature, based on 
the physiological sensations of hot and cold, we realize that it is based 
upon two essential properties. First, we expect temperature to be an 
intensive parameter,· having the same value in a part of a system as it has 
in the entire system. Second, we expect that heat should tend to flow from 
regions of high temperature toward regions of low temperature. These 
properties imply that thermal equilibrium is associated with equality and 
homogeneity of the temperature. Our formal definition of the temperature 
possesses each of these properties. 

2-6 TEMPERATURE UNITS 

The physical dimensions of temperature are those of energy divided by 
those of entropy. But we have not yet committed ourselves on the 
dimensions of entropy; in fact its dimensions can be selected quite 
arbitrarily. If the entropy is multiplied by any positive dimensional 
constant we obtain a new function of different dimensions but with 
exactly the same extremum properties-and therefore equally acceptable 
as the entropy. We summarily resolve the arbitrariness simply by adopting 
the convention that the entropy is dimensionless (from the more incisive 
viewpoint of statistical mechanics this is a physically reasonable choice). 
Consequently the dimensions of temperature are identical to those of 
energy. However, just as torque and work have the same dimensions, but 
are different types of quantities and are measured in different units (the 
meter-Newton and the joule, respectively), so the temperature and the 
energy should be carefully distinguished. The dimensions of both energy 
and temperature are [mass· (length)2/(time) 2 ). The units of energy are 
joules, ergs, calories, and the like. The units of temperature remain to be 
discussed. 

In our later discussion of thermodynamic "Carnot" engines, in Chapter 
4, we shall find that the optimum performance of an engine in contact 
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with two thermodynamic systems is completely determined by the ratio of 
the temperatures of those two systems. That is, the principles of thermody-
namics provide an experimental procedure that unambiguously determines 
the ratio of the temperatures of any two given systems. 

The fact that the ratio of temperatures is measurable has immediate 
consequences. First the zero of temperature is uniquely determined and 
cannot be arbitrarily assigned or "shifted." Second we are free to assign 
the value of unity (or some other value) to one arbitrary chosen state. All 
other temperatures are thereby determined. 

Equivalently, the single arbitrary aspect of the temperature scale is the 
size of the temperature unit, determined by assigning a specific tempera-
ture to some particular state of a standard system. 

The assignment of different temperature values to standard states leads 
to different thermodynamic temperature scales, but all thermodynamic 
temperature scales coincide at T = 0. Furthermore, according to equation 
1.7 no system can have a temperature lower than zero. Needless to say, 
this essential positivity of the temperature is in full agreement with all 
measurements of thermodynamic temperatures. 

The Kelvin scale of temperature, which is the official Systeme Interna-
tional (SI) system, is defined by assigning the number 273.16 to the 
temperature of a mixture of pure ice, water, and water vapor in mutual 
equilibrium; a state which we show in our later discussion of "triple 
points" determines a unique temperature. The corresponding unit of 
temperature is called a kelvin, designated by the notation K. 

The ratio of the kelvin and the joule, two units with the same dimen-
sions, is 1.3806 X 10- 23 joules/kelvin. This ratio is known as Boltzmann's 
constant and is generally designated as k 8 . Thus k 8 T is an energy. 

The Rankine scale is obtained by assigning the temperature ( ~) X 
273.16 = 491.688°R to the ice-water-water vapor system just referred to. 
The unit, denoted by 0 R, is called the degree Rankine. Rankine tempera-
tures are merely } times the corresponding Kelvin temperature. 

Closely related to the "absolute" Kelvin scale of temperature is the 
International Kelvin scale, which is a "practical" scale, defined in terms of 
the properties of particular systems in various temperature ranges and 
contrived to coincide as closely as possible with the (absolute) Kelvin 
scale. The practical advantage of the International Kelvin scale is that it 
provides reproducible laboratory standards for temperature measurement 
throughout the temperature range. However, from the thermodynamic 
point of view, it is not a true temperature scale, and to the extent that it 
deviates from the absolute Kelvin scale it will not yield temperature ratios 
that are consistent with those demanded by the thermodynamic for-
malism. 

The values of the temperature of everyday experiences are large num-
bers on both the Kelvin and the Rankine scales. Room temperatures are 
in the region of 300 K, or 540°R. For common usage, therefore, two 
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derivative scales are in common use. The Celsius scale is defined as 

T(°C) = T (K) - 273.15 (2.43) 

where T(0 C) denotes the "Celsius temperature," for which the unit is 
called the degree Celsius, denoted by 0 C. The zero of this scale is 
displaced relative to the true zero of temperature, so the Celsius tempera-
ture scale is not a thermodynamic temperature scale at all. Negative temper-
atures appear, the zero is incorrect, and ratios of temperatures are not in 
agreement with thermodynamic principles. Only temperature differences 
are correctly given. 

On the Celsius scale the "temperature" of the triple point (ice, water, 
and water vapor in mutual equilibrium) is 0.01 °C. The Celsius tempera-
ture of an equilibrium mixture of ice and water, maintained at a pressure 
of 1 atm, is even closer to 0°C, with the difference appearing only in the 
third decimal place. Also the Celsius temperature of boiling water at 1 
atm pressure is very nearly 100°C. These near equalities reveal the 
historical origin2 of the Celsius scale; before it was recognized that the 
zero of temperature is unique it was thought that two points, rather than 
one, could be arbitrarily assigned and these were taken (by Anders 
Celsius, in 1742) as the 0°C and 100°C just described. 

The Fahrenheit scale is a similar "practical" scale. It is now defined by 

T(°F) = T(0 R) - 459.67 = !T( 0 C) +32 (2.44) 
The Fahrenheit temperature of ice and water at 1 atm pressure is roughly 
32°F; the temperature of boiling water at 1 atm pressure is about 212°F; 
and room temperatures are in the vicinity of 70°F. More suggestive of the 
presumptive origins of this scale are the facts that ice, salt, and water 
coexist in equilibrium at 1 atm pressure at a temperature in the vicinity of 
0°F, and that the body (i.e., rectal) temperature of a cow is roughly 
100°F. 

Although we have defined the temperature formally in terms of a partial 
derivative of the fundamental relation, we briefly note the conventional 
method of introduction of the temperature concept, as developed by 
Kelvin and Caratheodory. The heat flux dQ is first defined very much as 
we have introduced it in connection with the energy conservation princi-
ple. From the consideration of certain cyclic processes it is then inferred 
that there exists an integrating factor (1/T) such that the product of this 
integrating factor with the imperfect differential dQ is a perfect differen-
tial (dS). 

dS = ~dQ (2.45) 

2A very short but fascinating review of the history of temperature scales is J by E. R. Jones. Jr .• 
The Physics Teacher 18, S94 (1980). 
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The temperature and the entropy thereby are introduced by analysis of 
the existence of integrating factors in particular types of differential 
equations called Pfaffian forms. 

PROBLEMS 

2.6-1. The temperature of a system composed of ice, water, and water vapor in 
mutual equilibrium has a temperature of exactly 273.16 K, by definition. The 
temperature of a system of ice and water at 1 atm of pressure is then measured as 
273.15 K, with the third and later decimal places uncertain. The temperature of a 
system of water and water vapor (i.e., boiling water) at 1 atm is measured as 
373.15 K ± 0.01 K. Compute the temperature of water-water vapor at 1 atm, 
with its probable error, on the Celsius, absolute Fahrenheit, and Fahrenheit 
scales. 
2.6-2. The "gas constant" R is defined as the product of Avogadro's number 
(NA = 6.0225 X 1023/mole) and Boltzmann's constant R = NAk 8 • Correspond-
ingly R == 8.314 J/mole K. Since the size of the Celsius degree is the same as the 
size of Kelvin degree, it has the value 8.314 J/mole 0 C. Express R in units of 
J/mole°F. 
2.6-3. Two particular systems have the following equations of state: 

and 

1 3 N<O 
-=-R-T<I> 2 u<1> 

1 5 N<2> -=-R-T<2> 2 u<2> 
where R is the gas constant (Problem 2.6-2). The mole number of the first system 
is NCI)= 2 and that of the second is N<2> = 3. The two systems are separated by a 
diathermal wall, and the total energy in the composite system is 2.5 X 103 J. 
What is the internal energy of each system in equilibrium? 

Answer: 
u<1> = 714.3 J 

2.6-4. Two systems with the equations of state given in Problem 2.6-3 are 
separated by a diathermal wall. The respective mole numbers are N<1l = 2 and 
N<2> = 3. The initial temperatures are T<1> = 250 Kand T<2> = 350 K. What are 
the values of u<1> and u<2> after equilibrium has been established? What is the 
equilibrium temperature? 

2-7 MECHANICAL EQUILIBRIUM 

A second application of extremum principle for the entropy yields 
an even simpler result and u1erefore is useful in making the procedure 
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clear. We consider a closed composite system consisting of two simple 
systems separated by a movable diathermal wall that is impervious to the 
flow of matter. The values of the mole numbers are fixed and constant. 
but the values of u<1> and u<2> can change, subject only to the closure 
condition 

u(l) + u(2) = constant (2.46) 

and the values of v<1> and v<2> can change, subject only to the closure 
condition 

v<1> + v<2> = constant (2.47) 

The extremum principle requires that no change in entropy result from 
infinitesimal virtual processes consisting of transfer of heat across the wall 
or of displacement of the wall. 

Then 

where 

dS- --( as<1> ) 
au<1> vo>. N (I) 

k ' 

dS = 0 

dU<1> + --( as(l)) 
av<1> u<11• NP>. 

( as<2> ) ducii + ( as<2> ) 
+ au<2> v<2>, .. N}2>,. av<2> u(2>, ... Nj2>, 

By the closure conditions 

and 

dV<2> = -dv< 1> 
whence 

(2.48) 

dV<2> (2.49) 

(2.50) 

(2.51) 

dS = - - - dU<1> + - - - dV<1> = 0 ( l l ) ( p O > p (2) ) 

r<l> r<2> r<l> r<2> (2.52) 

As this expression must vanish for arbitrary and independent values of 
du<1> and dv<1>, we must have 

1 1 ---=0 ro> rc2> 
(2.53) 



and 

p(l) p(2) 
---=0 y(l) y(2) 
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(2.54) 

Although these two equations are the equilibrium conditions in the proper 
form appropriate to the entropy representation, we note that they imply 
the physical conditions of equality of both temperature and pressure. 

y(l) = y<2> 

p(l) = p(2) 

(2.55) 

(2.56) 

The equality of the temperatures is just our previous result for equi-
librium with a diathermal wall. The equality of the pressures is the new 
feature introduced by the fact that the wall is movable. Of course, the 
equality of the pressures is precisely the result that we would expect on the 
basis of mechanics, and this result corroborates the identification of 
the function P as the mechanical pressure. 

Again we stress that this result is a formal solution of the given 
problem. In the entropy representation, 1;r< 1> is a function of u<1>, vm, 
and N<1> (an entropic equation of state), so that equation 2.53 is formally 
a relationship among u(I>, v(I>, u<2>, and v<2> (with N(ll and N<2> each 
held fixed). Similarly p(l>;r< 1> is a function of u(I>, v<1>, and N<1>, so 
that equation 2.54 is a second relationship among U(ll, v<1>, u<2>, and 
V(2). The two conservation equations 2.46 and 2.47 complete the four equa-
tions required to determine the four sought-for variables. Again thermo-
dynamics provides the methodology, which becomes explicit when applied 
to a concrete system with a definite fundamental relation, or with known 
equations of state. 

The case of a moveable adiabatic (rather than diathermal) wall presents 
a unique problem with subtleties that are best discussed after the for-
malism is developed more fully; we shall return to that case in Problem 
2.7-3 and in Problem 5.1-2. 

Example 1 
Three cylinders of identical cross-sectional areas are fitted with pistons, and each 
contains a gaseous system (not necessarily of the same composition). The pistons 
are connected to a rigid bar hinged on a fixed fulcrum, as indicated in Fig. 2.1. 
The "moment arms," or the distances from the fulcrum, are in the ratio of 
I : 2 : 3. The cylinders rest on a heat conductive table of negligible mass; the table 
makes no contribution to the physics of the problem except to ensure that the 
three cylinders are in diathermal contact. The entire system is isolated and no 
pressure acts on the external surfaces of the pistons. Find the ratio of pressures 
and of temperatures in the three cylinders. 
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FIGURE 2.1 
Three volume-coupled systems (Example 2.7-1). 

Solution 
The closure condition for the total energy is 

iu<1> + 8U<2> + iu<3> = 0 
and the coupling of the pistons imposes the conditions that 

iv<2> = 2 iv<1> 
and 

8V<3> = -38V(l) 
Then the extremal property of the entropy is 

is = - 1- iu<1> + - 1- iu<2> + - 1- iu<3> + pu> iv<1> 
T(I) T<2> T(l) T(I) 

pC2) p(3) 
+-iv< 2>+-iv< 3>= 0 

Tc2> T<J> 
Eliminating u<3>, v<2>, and v<3> 

is= (-1--_1_) iuc1> +(-1--_1_) iu<i> 
T(I) T(3) T(2) T(3) 

+ -+2--3- ivu>=o ( 
p(I) p(2) p(3)) 

T(I) T(2) T(3) 

The remaining three variations iu<1>, iu<2>, and iv<1> are arbitrary and uncon· 
strained, so that the coefficient of each must vanish separately. From the coeffi· 
dent of 8u<1> we find T<1> = T(3), and from the coefficient of iu<2> we find 
T<2> = T<3>. Hence all three systems come to a common final temperature. From 
the coefficient of 8V(I>, and using the equality of the temperatures, we find 

p(I) + 2p(2) = 3p(3) 

This is the expected result, embodying the familiar mechanical principle of th~ 
lever. Explicit knowledge of the equations of state would le us to convert this 
into a solution for the volumes of the three systems. 
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PROBLEMS 

2.7-1. Three cylinders are fitted with four pistons. as shown in Fig. 2.2. The 
cross-sectional areas of the cylinders are in the ratio A 1 : A 2 : A 3 = 1 : 2: 3. Pairs 
of pistons are coupled so that their displacements (linear motions) are equal. The 
walls of the cylinders are diathermal and are connected by a heat conducting bar 
(crosshatched in the figure). The entire system is isolated (so that, for instance, 
there is no pressure exerted on the outer surfaces of the pistons). Find the ratios 
of pressures in the t!iree cylinders. 

2.7-2. Two particular systems have the following equations of state: 

and 

1 3 N<1> 
-=-R-y(!> 2 u(l), 

1 5 N<2> ---R-y<2> - 2 u(2) • 

p<I> NCI> 
-=R-y<!) vo> 

pc2i N<2> 
-=R-ycii vcii 

The mole number of the first system is N<1> = 0.5 and that of the second is 
N<2> = 0.75. The two systems are contained in a closed cylinder, separated by a 
fixed, adiabatic, and impermeable piston. The initial temperatures are yCI) = 200 
K and Y <2> = 300 K, and the total volume is 20 liters. The "setscrew" which 
prevents the motion of the piston is then removed, and simultaneously the 
adiabatic insulation of the piston is stripped off, so that the piston becomes 
moveable, diathermal, and impermeable. What is the energy, volume, pressure, 
and temperature of each subsystem when equilibrium is established? 

It is sufficient to take R = 8.3 J /mole K and to assume the external pressure to 
be zero. 

Answer: 
lj(l) = 1700 J 

2.7-3. The hypothetical problem of equilibrium in a closed composite system with 
an internal moveable adiabatic wall is a unique indeterminate problem. Physi-
cally, release of the piston would lead it to perpetual oscillation in the absence of 
viscous damping. With visco~ imping the piston would eventually come to rest 
at such a position that the pressures on either side would be equal, but the 
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temperatures in each subsystem would then depend on the relative viscosity in 
each subsystem. The solution of this problem depends on dynamical considera-
tions. Show that the application of the entropy maximum formalism is corre-
spondingly indeterminate with respect to the temperatures (but determinate with 
respect to the pressures). 

Hint: First show that with du<1> = - p(l>dv<1>, and similarly for subsystem 2, 
energy conservation gives p<1> = p<2>. Then show that the entropy maximum 
condition vanishes identically, giving no solution for r<1> or T<2>. 

2-8 EQUILIBRIUM WITH RESPECT TO MA TIER FLOW 

Consideration of the flow of matter provides insight into the nature of 
the chemical potential. We consider the equilibrium state of two simple 
systems connected by a rigid and diathermal wall, permeable to one type 
of material (N 1) and impermeable to aU others (N 2 , N3, •• • , N,). We seek 
the equilibrium values of u<1> and u<2> and of N1<1> and N?>. The virtual 
change in entropy in the appropriate virtual process is 

1 (1) 1 <2> 
dS = - du< 1> - L dN(I) + - du< 2> - L dN<2> (2.57) r<l> r<l> i r<2> r<2> i 

and the closure conditions demand 

dU<2> = -du< 1> (2.58) 

and 

dN<2> = -dN< 1> I l (2.59) 

whence 

dS = (-1--_1_) dU(l) -( µ11) - µ\2)) dN(I) 
r<1> r<2> T(l) T(2) I (2.60) 

As dS must vanish for arbitrary values of both dU<1> and dNp>, we find 
as the conditions of equilibrium 

1 1 
(2.61) r<I> r<2> 

and 

µ\I) µ?> 
--=--T(I) r<2> (hence also µ\1> = µf>) (2.62) 
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Thus, just as the temperature can be looked upon as a sort of "potential" 
for heat flux and the pressure can be looked upon as a sort of" potential" 
for volume changes, so the chemical potential can be looked upon as a 
sort of "potential" for matter flux. A difference in chemical potential 
provides a "generalized force" for matter flow. 

The direction of the matter flow can be analyzed by the same method 
used in Section 2.5 to analyze the direction of the heat flow. If we assume 
that the temperatures T<1> and T<2> are equal, equation 2.60 becomes 

(2) _ (1) 
dS = P.i P.i dN<1> T i 

{2.63) 

If µ11> is greater than µ?>, dNp> will be negative, since dS must be 
positive. Thus matter tends to flow from regions of high chemical poten-
tial to regions of low chemical potential. 

In later chapters we shall see that the chemical potential provides the 
generalized force not only for the flow of matter from point to point but 
also for its changes of phase and for chemical reactions. The chemical 
potential thus plays a dominant role in theoretical chemistry. 

The units of chemical potential are joules per mole ( or any desired 
energy unit per mole). 

PROBLEMS 

2.8-1. The fundamental equation of a particular type of two-component system is 
uv 2v N1 N2 

S =NA+ NRln N 512 - N1R1nN - N2R1nN 

N =NI+ N2 
where A is an unspecified constant. A closed rigid cylinder of total volume 10 
liters is divided into two chambers of equal volume by a diathermal rigid 
membrane, permeable to the first component but impermeable to the second. In 
one chamber is placed a sample of the system with original parameters Np> = 0.5, 
Njl> = 0.75, v<1> = 5 liters, and T<1> = 300 K. In the second chamber is placed a 
sample with original parameters N?> = 1, NP> = 0.5, v<2> = 5 liters, and T<2> = 
250 K. After equilibrium is established, what are the values of Np>, NF>, T, po>, 
and p<2>? 

Answer: 
T= 272.7 K 

2.8-2. A two-component gaseous system has a fundamental equation of the form 

s = Au113v113N113 + BilN2, N = N1 + N2 
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where A and B are positive constants. A closed cylinder of total volume 2V0 is 
separated into two equal subvolumes by a rigid diathermal partition permeable 
only to the first component. One mole of the first component, at a temperature 
T,. is introduced in the left-hand subvolume, and a mixture of ! mole of each 
component, at a temperature T,., is introduced into the right-hand subvolume. 

Find the equilibrium temperature T, and the mole numbers in each subvolume 
when the system has come to equilibrium, assuming that T, = 27; =400 Kand 
that 37 B2 = 100A3V0• Neglect the heat capacity of the walls of the container! 

Answer: 
N1t = 0.9 

2-9 CHEMICAL EQUILIBRIUM 

Systems that can undergo chemical reactions bear a strong formal 
similarity to the diffusional systems considered in the preceding section. 
Again they are governed by equilibrium conditions expressed in terms of 
the chemical potential µ-whence derives its name chemical potential. 

In a chemical reaction the mole numbers of the system change, some 
increasing at the expense of a decrease in others. The relationships among 
the changing mole numbers are governed by chemical reaction equations 
such as 

(2.64) 

or 

(2.65) 

The meaning of the first of these equations is that the changes in the mole 
numbers of hydrogen, oxygen, and water stand in the ratio of 
- 2 : - 1 : + 2. More generally one writes a chemical reaction equation, 
for a system with r components, in the form 

(2.66) 

The v1 are the "stoichiometric coefficients" ( - 2, -1, + 2 for the reaction 
of hydrogen and oxygen to form water), and the A 1 are the symbols for 
the chemical components (A 1 = H 2 , A 2 = 0 2 , and A 3 = H 20 for the 
preceding reaction). If the reaction is viewed in the reverse sense (for 
instance, as the dissociation of water to hydrogen plus oxygen) the 
opposite signs would be assigned to each of the v1 ; this is a matter of 
arbitrary choice and only the relative signs of the v1 are significant. 
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The fundamental equation of the system is 

S = S(U, V, N1, N2 , ••• , Nr) (2.67) 

In the course of the chemical reaction both the total energy U and the 
total volume V remain fixed, the system being considered to be enclosed 
in an adiabatic and rigid "reaction vessel." This is not the most common 
boundary condition for chemical reactions, which are more often carried 
out in open vessels, free to interchange energy and volume with the 
ambient atmosphere; we shall return to these open boundary conditions in 
Section 6.4. 

The change in entropy in a virtual chemical process is then 

dS = - r, µ, dN 
j=l T ' 

(2.68) 

However, the changes in the mole numbers are proportional to the 
stoicl_!iometric coefficients v1 • Let the factor of proportionality be denoted 
by dN, so that 

dN r 
dS = - T L µ1 v1 (2.69) 

J=l 

Then the extremum principle dictates that, in equilibrium 
r 

:E µ,.,,1 = o 
1= l 

(2.70) 

If the equations of state of the mixture are known, the equilibrium 
condition (2. 70) permits explicit solution for the final mole numbers. 

It is of interest to examine this "solution in principle" in a slightly 
richer case. If hydrogen, oxygen, and carbon dioxide are introduced into a 
vessel the following chemical reactions may occur. 

H 2 + }0 2 H 20 

CO2 + H 2 CO + H 20 

CO+ !0 2 CO2 

In equilibrium we then have 

µ + lµ - µ H 2 2 0 2 - H 2 0 

(2.71) 

(2.72) 
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These constitute two independent equations, for the first equation is 
simply the sum of the two following equations (just as the first chemical 
reaction is the net result of the two succeeding reactions). The amounts of 
hydrogen, oxygen, and carbon introduced into the system (in whatever 
chemical combinations) specify three additional com.traints. There are 
thus five constraints, and there are precisely five mole numbers to be 
found (the quantities of H 2 , 0 2 , H 20, CO2 , and CO). The problem is 
thereby solved in prmciple. 

As we observed earlier, chemical reactions more typically occur in open 
vessels with only the final pressure and temperature determined. The 
number of variables is then increased by two (the energy and the volume) 
but the specification of T and P provides two additional constraints. 
Again the problem is determinate. 

We shall return to a more thorough discussion of chemical reactions in 
Section 6.4. For now it is sufficient to stress that the chemical potential 
plays a role in matter transfer or chemical reactions fully analogous to the 
role of temperature in heat transfer or pressure in volume transfer. 

PROBLEMS 

2.9-1. The hydrogenation of propane (C 3 H 8 ) to form methane (CH 4 ) proceeds 
by the reaction 

C3 H 8 + 2H 2 3CH 4 

Find the relationship among the chemical potentials and show that both the 
problem and the solution are formally identical to Example 1 on mechanical 
equilibrium. 


